Differentiability: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
<math>f_1: D \to {\mathbb R}</math> that is continuous in <math>x_0</math> such that | <math>f_1: D \to {\mathbb R}</math> that is continuous in <math>x_0</math> such that | ||
:<math> f(x) = f(x_0) + (x-x_0) f_1(x) </math> | :<math> f(x) = f(x_0) + (x-x_0) f_1(x) \,.</math> | ||
Drag the point <math>x</math> to draw the function <math>f_1</math>. | |||
<jsxgraph box="box" width="600" height="400"> | <jsxgraph box="box" width="600" height="400"> | ||
board = JXG.JSXGraph.initBoard('box', { | board = JXG.JSXGraph.initBoard('box', { | ||
Line 32: | Line 32: | ||
{ size: 1, name: 'f_1', color: 'black', fixed: true, trace: true}); | { size: 1, name: 'f_1', color: 'black', fixed: true, trace: true}); | ||
var txt = board.create('text', [ | var txt = board.create('text', [0.5, 7, function() { | ||
return '( ' + | return '( ' + | ||
fx.Y().toFixed(2) + ' - (' + fx0.Y().toFixed(2) + | fx.Y().toFixed(2) + ' - (' + fx0.Y().toFixed(2) + | ||
') ) / (' + | ') ) / ( ' + | ||
fx.X().toFixed(2) + ' - (' + fx0.X().toFixed(2) + | fx.X().toFixed(2) + ' - (' + fx0.X().toFixed(2) + | ||
') ) = ' + ((fx.Y()-fx0.Y())/(fx.X()-fx0.X())).toFixed(3); | ') ) = ' + ((fx.Y()-fx0.Y())/(fx.X()-fx0.X())).toFixed(3); | ||
Line 45: | Line 45: | ||
===The underlying JavaScript code=== | ===The underlying JavaScript code=== | ||
<source lang="javascript"> | <source lang="javascript"> | ||
board = JXG.JSXGraph.initBoard('box', { | |||
boundingbox: [-5, 10, 7, -6], | |||
axis: true, | |||
showClearTrace: true, | |||
showFullscreen: true}); | |||
var p = []; | |||
p[0] = board.create('point', [-1,0], {withLabel: false, size:2, color:'blue'}); | |||
p[1] = board.create('point', [-0.5,3], {withLabel: false, size:2, color:'blue'}); | |||
p[2] = board.create('point', [2,0.5], {withLabel: false, size:2, color:'blue'}); | |||
p[3] = board.create('point', [6, 3], {withLabel: false, size:2, color:'blue'}); | |||
var pol = JXG.Math.Numerics.lagrangePolynomial(p); | |||
var graph = board.create('functiongraph', [pol, -10, 10], {strokeWidth: 2, name:"f", withLabel: true}); | |||
var x0 = board.create('glider', [1, 0, board.defaultAxes.x], {name: 'x_0', size:4}); | |||
var fx0 = board.create('point', [ | |||
function() { return x0.X(); }, | |||
function() { return pol(x0.X()); } | |||
], {name: '', color: 'grey', fixed: true, size:3}); | |||
var x = board.create('glider', [5, 0, board.defaultAxes.x], {name: 'x', size:4}); | |||
var fx = board.create('point', [ | |||
function() { return x.X(); }, | |||
function() { return pol(x.X()); } | |||
], {name: '', color: 'grey', fixed: true, size:3}); | |||
var line = board.create('line',[fx0, fx],{strokeColor:'#ff0000',dash:2}); | |||
var f1 = board.create('point', [ | |||
function() { return x.X(); }, | |||
function() { return (fx.Y()-fx0.Y())/(fx.X()-fx0.X() + 0.0000001); }], | |||
{ size: 1, name: 'f_1', color: 'black', fixed: true, trace: true}); | |||
var txt = board.create('text', [0.5, 7, function() { | |||
return '( ' + | |||
fx.Y().toFixed(2) + ' - (' + fx0.Y().toFixed(2) + | |||
') ) / ( ' + | |||
fx.X().toFixed(2) + ' - (' + fx0.X().toFixed(2) + | |||
') ) = ' + ((fx.Y()-fx0.Y())/(fx.X()-fx0.X())).toFixed(3); | |||
}]); | |||
board.create('functiongraph',[JXG.Math.Numerics.D(pol)], {dash: 2, name:"f'", withLabel: true}); | |||
</source> | </source> | ||
[[Category:Examples]] | [[Category:Examples]] | ||
[[Category:Calculus]] | [[Category:Calculus]] |
Latest revision as of 19:38, 22 January 2019
If the function [math]\displaystyle{ f: D \to {\mathbb R} }[/math] is differentiable in [math]\displaystyle{ x_0\in D }[/math] then there is a function [math]\displaystyle{ f_1: D \to {\mathbb R} }[/math] that is continuous in [math]\displaystyle{ x_0 }[/math] such that
- [math]\displaystyle{ f(x) = f(x_0) + (x-x_0) f_1(x) \,. }[/math]
Drag the point [math]\displaystyle{ x }[/math] to draw the function [math]\displaystyle{ f_1 }[/math].
The underlying JavaScript code
board = JXG.JSXGraph.initBoard('box', {
boundingbox: [-5, 10, 7, -6],
axis: true,
showClearTrace: true,
showFullscreen: true});
var p = [];
p[0] = board.create('point', [-1,0], {withLabel: false, size:2, color:'blue'});
p[1] = board.create('point', [-0.5,3], {withLabel: false, size:2, color:'blue'});
p[2] = board.create('point', [2,0.5], {withLabel: false, size:2, color:'blue'});
p[3] = board.create('point', [6, 3], {withLabel: false, size:2, color:'blue'});
var pol = JXG.Math.Numerics.lagrangePolynomial(p);
var graph = board.create('functiongraph', [pol, -10, 10], {strokeWidth: 2, name:"f", withLabel: true});
var x0 = board.create('glider', [1, 0, board.defaultAxes.x], {name: 'x_0', size:4});
var fx0 = board.create('point', [
function() { return x0.X(); },
function() { return pol(x0.X()); }
], {name: '', color: 'grey', fixed: true, size:3});
var x = board.create('glider', [5, 0, board.defaultAxes.x], {name: 'x', size:4});
var fx = board.create('point', [
function() { return x.X(); },
function() { return pol(x.X()); }
], {name: '', color: 'grey', fixed: true, size:3});
var line = board.create('line',[fx0, fx],{strokeColor:'#ff0000',dash:2});
var f1 = board.create('point', [
function() { return x.X(); },
function() { return (fx.Y()-fx0.Y())/(fx.X()-fx0.X() + 0.0000001); }],
{ size: 1, name: 'f_1', color: 'black', fixed: true, trace: true});
var txt = board.create('text', [0.5, 7, function() {
return '( ' +
fx.Y().toFixed(2) + ' - (' + fx0.Y().toFixed(2) +
') ) / ( ' +
fx.X().toFixed(2) + ' - (' + fx0.X().toFixed(2) +
') ) = ' + ((fx.Y()-fx0.Y())/(fx.X()-fx0.X())).toFixed(3);
}]);
board.create('functiongraph',[JXG.Math.Numerics.D(pol)], {dash: 2, name:"f'", withLabel: true});