Hypotrochoid: Difference between revisions
From JSXGraph Wiki
| A WASSERMANN (talk | contribs)  New page: <html> <link rel="stylesheet" type="text/css" href="http://jsxgraph.uni-bayreuth.de/distrib/jsxgraph.css" /> <script type="text/javascript" src="http://jsxgraph.uni-bayreuth.de/distrib/pro... | No edit summary | ||
| (12 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| < | <jsxgraph box="jxgbox" width="500" height="500"> | ||
| var board = JXG.JSXGraph.initBoard('jxgbox', {boundingbox: [-5, 5, 5, -5]}); | |||
| var g1 = board.create('point', [1, -1], {size:4}); | |||
| var g2 = board.create('point', [2.5, -2], {size:4}); | |||
| var g3 = board.create('point', [1, -3], {size:3}); | |||
| var g4 = board.create('point', [2.5, -4], {size:3}); | |||
| var g5 = board.create('point', [-4, 1], {size:3,name:''}); | |||
| var c1 = board.create('curve', [ | |||
|         function(t){ return (g1.X()-g2.X())*Math.cos(t)+g3.X()*Math.cos(t*(g1.X()-g2.X())/g2.X()); }, |         function(t){ return (g1.X()-g2.X())*Math.cos(t)+g3.X()*Math.cos(t*(g1.X()-g2.X())/g2.X()); }, | ||
|         function(t){ return (g1.X()-g2.X())*Math.sin(t)+g3.X()*Math.sin(t*(g1.X()-g2.X())/g2.X()); }, |         function(t){ return (g1.X()-g2.X())*Math.sin(t)+g3.X()*Math.sin(t*(g1.X()-g2.X())/g2.X()); }, | ||
|         0,function(){ return Math.PI*7*Math.abs(g4.X());}],{ | |||
|            strokeWidth:function(){return g5.Y()*3;}, |            strokeWidth:function(){return g5.Y()*3;}, | ||
|            strokeOpacity:function(){return g5.Y()*0.6;} |            strokeOpacity:function(){return g5.Y()*0.6;} | ||
|           }); |           }); | ||
| var t = board.create('text', [function() { return g5.X()+0.2; },function() { return g5.Y()+0.25; }, 'X(B)=<value>X(B)</value>'],   | |||
|          {   |          {   | ||
|              digits:3,   |              digits:3,   | ||
|              fontSize:function(){return g5.Y()*10;} |              fontSize:function(){return Math.abs(g5.Y())*10+1;}   | ||
|          }); |          }); | ||
| </ | </jsxgraph>   | ||
| ===The JavaScript code to produce this picture=== | |||
| <source lang="javascript"> | <source lang="javascript"> | ||
| var board = JXG.JSXGraph.initBoard('jxgbox', {boundingbox: [-5, 5, 5, -5]}); | |||
| var g1 = board.create('point', [1, -1], {size:4}); | |||
| var g2 = board.create('point', [2.5, -2], {size:4}); | |||
| var g3 = board.create('point', [1, -3], {size:3}); | |||
| var g4 = board.create('point', [2.5, -4], {size:3}); | |||
| var g5 = board.create('point', [-4, 1], {size:3,name:''}); | |||
| var c1 = board.create('curve', [ | |||
|        function(t){ return (g1.X()-g2.X())*Math.cos(t)+g3.X()*Math.cos(t*(g1.X()-g2.X())/g2.X()); }, | |||
|        function(t){ return (g1.X()-g2.X())*Math.sin(t)+g3.X()*Math.sin(t*(g1.X()-g2.X())/g2.X()); }, | |||
|        0,function(){ return Math.PI*7*Math.abs(g4.X());}],{ | |||
|           strokeWidth:function(){return g5.Y()*3;}, | |||
|           strokeOpacity:function(){return g5.Y()*0.6;} | |||
|          }); | |||
| var t = board.create('text', [function() { return g5.X()+0.2; },function() { return g5.Y()+0.25; },'X(B)=<value>X(B)</value>'],  | |||
|         {  | |||
|             digits:3,  | |||
|             fontSize:function(){return Math.abs(g5.Y())*10+1;} | |||
|         }); | |||
| </source> | </source> | ||
| [[Category:Examples]] | [[Category:Examples]] | ||
| [[Category:Curves]] | |||
Latest revision as of 14:42, 21 February 2013
The JavaScript code to produce this picture
var board = JXG.JSXGraph.initBoard('jxgbox', {boundingbox: [-5, 5, 5, -5]});
var g1 = board.create('point', [1, -1], {size:4});
var g2 = board.create('point', [2.5, -2], {size:4});
var g3 = board.create('point', [1, -3], {size:3});
var g4 = board.create('point', [2.5, -4], {size:3});
var g5 = board.create('point', [-4, 1], {size:3,name:''});
var c1 = board.create('curve', [
       function(t){ return (g1.X()-g2.X())*Math.cos(t)+g3.X()*Math.cos(t*(g1.X()-g2.X())/g2.X()); },
       function(t){ return (g1.X()-g2.X())*Math.sin(t)+g3.X()*Math.sin(t*(g1.X()-g2.X())/g2.X()); },
       0,function(){ return Math.PI*7*Math.abs(g4.X());}],{
          strokeWidth:function(){return g5.Y()*3;},
          strokeOpacity:function(){return g5.Y()*0.6;}
         });
var t = board.create('text', [function() { return g5.X()+0.2; },function() { return g5.Y()+0.25; },'X(B)=<value>X(B)</value>'], 
        { 
            digits:3, 
            fontSize:function(){return Math.abs(g5.Y())*10+1;}
        });
