Superformula: Difference between revisions
From JSXGraph Wiki
No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 20: | Line 20: | ||
var len = b2.create('slider', [[1,2],[7,2],[0,2,20]],{name:'len'}); | var len = b2.create('slider', [[1,2],[7,2],[0,2,20]],{name:'len'}); | ||
var c = b2.create('curve', [ | var c = b2.create('curve', [ | ||
function(phi){return | function(phi){return JXG.Math.pow( | ||
JXG.Math.pow(Math.abs(Math.cos( m.Value()*phi*0.25/a.Value() )), n2.Value())+ | |||
JXG.Math.pow(Math.abs(Math.sin( m.Value()*phi*0.25/b.Value() )), n3.Value()), | |||
-1/n1.Value()); }, | -1/n1.Value()); }, | ||
[0, 0],0, function(){return len.Value()*Math.PI;}], | [0, 0],0, function(){return len.Value()*Math.PI;}], | ||
Line 41: | Line 41: | ||
var len = b2.create('slider', [[1,2],[7,2],[0,2,20]],{name:'len'}); | var len = b2.create('slider', [[1,2],[7,2],[0,2,20]],{name:'len'}); | ||
var c = b2.create('curve', [ | var c = b2.create('curve', [ | ||
function(phi){return | function(phi){return JXG.Math.pow( | ||
JXG.Math.pow(Math.abs(Math.cos( m.Value()*phi*0.25/a.Value() )), n2.Value())+ | |||
JXG.Math.pow(Math.abs(Math.sin( m.Value()*phi*0.25/b.Value() )), n3.Value()), | |||
-1/n1.Value()); }, | -1/n1.Value()); }, | ||
[0, 0],0, function(){return len.Value()*Math.PI;}], | [0, 0],0, function(){return len.Value()*Math.PI;}], |
Latest revision as of 16:01, 20 February 2013
The superformula is a generalization of the superellipse and was first proposed by Johan Gielis.
Gielis suggested that the formula can be used to describe many complex shapes and curves that are found in nature. Others point out that the same can be said about many formulas with a sufficient number of parameters.
In polar coordinates, with r the radius and φ the angle, the superformula is:
- [math]\displaystyle{ r\left(\phi\right) = \left[ \left| \frac{\cos\left(\frac{m\phi}{4}\right)}{a} \right| ^{n_{2}} + \left| \frac{\sin\left(\frac{m\phi}{4}\right)}{b} \right| ^{n_{3}} \right] ^{-\frac{1}{n_{1}}} }[/math]
The JavaScript code to produce this picture
var b2 = JXG.JSXGraph.initBoard('box2', {axis:true, boundingbox: [-10, 10, 12, -10]});
b2.suspendUpdate();
var a = b2.create('slider', [[-7,8],[7,8],[0,1,4]],{name:'a'});
var b = b2.create('slider', [[-7,7],[7,7],[0,1,4]],{name:'b'});
var m = b2.create('slider', [[-7,6],[7,6],[0,4,40]],{name:'m'});
var n1 = b2.create('slider', [[-7,5],[7,5],[0,4,20]],{name:'n_1'});
var n2 = b2.create('slider', [[-7,4],[7,4],[0,4,20]],{name:'n_2'});
var n3 = b2.create('slider', [[-7,3],[7,3],[0,4,20]],{name:'n_3'});
var len = b2.create('slider', [[1,2],[7,2],[0,2,20]],{name:'len'});
var c = b2.create('curve', [
function(phi){return JXG.Math.pow(
JXG.Math.pow(Math.abs(Math.cos( m.Value()*phi*0.25/a.Value() )), n2.Value())+
JXG.Math.pow(Math.abs(Math.sin( m.Value()*phi*0.25/b.Value() )), n3.Value()),
-1/n1.Value()); },
[0, 0],0, function(){return len.Value()*Math.PI;}],
{curveType:'polar', strokewidth:1,fillColor:'#765412',fillOpacity:0.3});
b2.unsuspendUpdate();