Epidemiology: The SEIR model: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary  | 
				A WASSERMANN (talk | contribs) No edit summary  | 
				||
| (2 intermediate revisions by 2 users not shown) | |||
| Line 26: | Line 26: | ||
</html>  | </html>  | ||
<jsxgraph width="700" height="600" box="box">  | <jsxgraph width="700" height="600" box="box">  | ||
var brd = JXG.JSXGraph.initBoard('box', {  | var brd = JXG.JSXGraph.initBoard('box', {axis: true, boundingbox: [-4, 1.25, 114, -1.25]});  | ||
var S = brd.createElement('turtle',[],{strokeColor:'blue',strokeWidth:3});  | var S = brd.createElement('turtle',[],{strokeColor:'blue',strokeWidth:3});  | ||
| Line 46: | Line 46: | ||
brd.createElement('text', [40,-0.2,    | brd.createElement('text', [40,-0.2,    | ||
         function() {return "Day "+t+": infected="+  |          function() {return "Day "+t+": infected="+(7900000*I.Y()).toFixed(1)+" recovered="+(7900000*R.Y()).toFixed(1);}]);  | ||
| Line 78: | Line 78: | ||
function turtleMove(turtle,dx,dy) {  | function turtleMove(turtle,dx,dy) {  | ||
   turtle.moveTo([dx+turtle.  |    turtle.moveTo([dx+turtle.X(),dy+turtle.Y()]);  | ||
}  | }  | ||
function loop() {  | function loop() {  | ||
   var dS = mu.Value()*(1.0-S.  |    var dS = mu.Value()*(1.0-S.Y())-beta.Value()*I.Y()*S.Y();    | ||
   var dE = beta.Value()*I.  |    var dE = beta.Value()*I.Y()*S.Y()-(mu.Value()+a.Value())*E.Y();  | ||
   var dI = a.Value()*E.  |    var dI = a.Value()*E.Y()-(gamma.Value()+mu.Value())*I.Y();  | ||
   var dR = gamma.Value()*I.  |    var dR = gamma.Value()*I.Y()-mu.Value()*R.Y();  | ||
   turtleMove(S,delta,dS);  |    turtleMove(S,delta,dS);  | ||
   turtleMove(E,delta,dE);  |    turtleMove(E,delta,dE);  | ||
Latest revision as of 14:58, 20 February 2013
For many important infections there is a significant period of time during which the individual has been infected but is not yet infectious himself. During this latent period the individual is in compartment E (for exposed).
Assuming that the period of staying in the latent state is a random variable with exponential distribution with parameter a (i.e. the average latent period is [math]\displaystyle{ a^{-1} }[/math]), and also assuming the presence of vital dynamics with birth rate equal to death rate, we have the model:
- [math]\displaystyle{ \frac{dS}{dt} = \mu N - \mu S - \beta \frac{I}{N} S }[/math]
 
- [math]\displaystyle{ \frac{dE}{dt} = \beta \frac{I}{N} S - (\mu +a ) E }[/math]
 
- [math]\displaystyle{ \frac{dI}{dt} = a E - (\gamma +\mu ) I }[/math]
 
- [math]\displaystyle{ \frac{dR}{dt} = \gamma I - \mu R. }[/math]
 
Of course, we have that [math]\displaystyle{ S+E+I+R=N }[/math].
The lines in the JSXGraph-simulation below have the following meaning:
* Blue: Rate of susceptible population * Black: Rate of exposed population * Red: Rate of infectious population * Green: Rate of recovered population (which means: immune, isolated or dead)