Rose: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 17: | Line 17: | ||
<jsxgraph width="500" height="500" box="box2"> | <jsxgraph width="500" height="500" box="box2"> | ||
var b2 = JXG.JSXGraph.initBoard('box2', {axis:true, | var b2 = JXG.JSXGraph.initBoard('box2', {axis:true,boundingbox: [-10, 10, 10, -10]}); | ||
var f = b2. | var f = b2.create('slider', [[1,8],[6,8],[0,4,8]]); | ||
var len = b2. | var len = b2.create('slider', [[1,7],[6,7],[0,2,8]],{snapWidth:1,name:'len'}); | ||
var k = b2. | var k = b2.create('slider', [[1,6],[6,6],[0,2,12]],{snapWidth:0.2,name:'k'}); | ||
var c = b2. | var c = b2.create('curve', [function(phi){return f.Value()*Math.cos(k.Value()*phi); }, [0, 0],0, function(){return len.Value()*Math.PI;}], | ||
{curveType:'polar', strokewidth:2}); | {curveType:'polar', strokewidth:2}); | ||
</jsxgraph> | </jsxgraph> | ||
Line 27: | Line 27: | ||
===The JavaScript code to produce this picture=== | ===The JavaScript code to produce this picture=== | ||
<source lang=" | <source lang="javascript"> | ||
var b2 = JXG.JSXGraph.initBoard('box2', {axis:true,boundingbox: [-10, 10, 10, -10]}); | |||
var b2 = JXG.JSXGraph.initBoard('box2', {axis:true, | var f = b2.create('slider', [[1,8],[6,8],[0,4,8]]); | ||
var f = b2. | var len = b2.create('slider', [[1,7],[6,7],[0,2,8]],{snapWidth:1,name:'len'}); | ||
var len = b2. | var k = b2.create('slider', [[1,6],[6,6],[0,2,12]],{snapWidth:0.2,name:'k'}); | ||
var k = b2. | var c = b2.create('curve', [function(phi){return f.Value()*Math.cos(k.Value()*phi); }, [0, 0],0, function(){return len.Value()*Math.PI;}], | ||
var c = b2. | |||
{curveType:'polar', strokewidth:2}); | {curveType:'polar', strokewidth:2}); | ||
</source> | </source> | ||
Latest revision as of 12:39, 8 June 2011
A rose or rhodonea curve is a sinusoid plotted in polar coordinates. Up to similarity, these curves can all be expressed by a polar equation of the form
- [math]\displaystyle{ \!\,r=\cos(k\theta). }[/math]
If k is an integer, the curve will be rose shaped with
- 2k petals if k is even, and
- k petals if k is odd.
When k is even, the entire graph of the rose will be traced out exactly once when the value of θ changes from 0 to 2π. When k is odd, this will happen on the interval between 0 and π. (More generally, this will happen on any interval of length [math]\displaystyle{ 2\pi }[/math] for [math]\displaystyle{ k }[/math] even, and [math]\displaystyle{ \pi }[/math] for [math]\displaystyle{ k }[/math] odd.)
The quadrifolium is a type of rose curve with n=2. It has polar equation:
- [math]\displaystyle{ r = \cos(2\theta), \, }[/math]
with corresponding algebraic equation
- [math]\displaystyle{ (x^2+y^2)^3 = (x^2-y^2)^2. \, }[/math]
The JavaScript code to produce this picture
var b2 = JXG.JSXGraph.initBoard('box2', {axis:true,boundingbox: [-10, 10, 10, -10]});
var f = b2.create('slider', [[1,8],[6,8],[0,4,8]]);
var len = b2.create('slider', [[1,7],[6,7],[0,2,8]],{snapWidth:1,name:'len'});
var k = b2.create('slider', [[1,6],[6,6],[0,2,12]],{snapWidth:0.2,name:'k'});
var c = b2.create('curve', [function(phi){return f.Value()*Math.cos(k.Value()*phi); }, [0, 0],0, function(){return len.Value()*Math.PI;}],
{curveType:'polar', strokewidth:2});