Tschirnhausen Cubic Catacaustic: Difference between revisions

From JSXGraph Wiki
No edit summary
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 4: Line 4:


:<math> y = at(t^2-3) </math>
:<math> y = at(t^2-3) </math>
Its catcaustic (red curve) with radiant point <math>(-8a,p)</math>
Its catacaustic (red curve) with radiant point <math>(-8a,p)</math>
is the semicubical parabola with parametric equations
is the semicubical parabola with parametric equations


Line 11: Line 11:
:<math> y = a4t^3 </math>
:<math> y = a4t^3 </math>


The catacaustic is the envelope of the rays reflected by the Tschirnhausen cubic.
The ray's source is the ''radiant point''.
You can get a feeling why the red curve is called ''envelope'' of the blue line if you drag the ''point of reflection''.
<jsxgraph width="600" height="600">
<jsxgraph width="600" height="600">
(function(){
(function(){
Line 25: Line 29:


var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});
var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});
var reflectionpoint = brd.create('glider',[-7,1,cubic],{name:'point of reflection', size:1});
var reflectionpoint = brd.create('glider',[-7,1,cubic],{name:'point of reflection'});
var dir = brd.create('segment',[radpoint,reflectionpoint],{strokeWidth:1});
var infty = brd.create('point',
var infty = brd.create('point',
     [
     [
       function(){  
       function(){  
             //var a = dir.stdform[1], b = dir.stdform[2],
             var a = dir.stdform[1], b = dir.stdform[2],
            var a = -reflectionpoint.X()+radpoint.X(),
                b = -reflectionpoint.Y()+radpoint.Y(),
                 t = reflectionpoint.position,
                 t = reflectionpoint.position,
                 u = JXG.Math.Numerics.D(cubic.X)(t),  
                 u = JXG.Math.Numerics.D(cubic.X)(t),  
Line 40: Line 43:
       }
       }
     ],{name:'', visible:false});
     ],{name:'', visible:false});
var dir = brd.create('segment',[radpoint,reflectionpoint],{strokeWidth:1});


var reflection = brd.create('line',
var reflection = brd.create('line',
       [reflectionpoint,infty],
       [reflectionpoint,infty],
       {strokeWidth:1, straightFirst:false});
       {strokeWidth:1, straightFirst:false, trace:true});


var cataustic = brd.create('curve',
var cataustic = brd.create('curve',
Line 51: Line 53:
                 -4, 4
                 -4, 4
                 ],
                 ],
                 {strokeWidth:1, strokeColor:'red'});
                 {strokeWidth:3, strokeColor:'red'});
brd.unsuspendUpdate();
brd.unsuspendUpdate();
})();
})();
Line 58: Line 60:
===References===
===References===
* [http://mathworld.wolfram.com/TschirnhausenCubicCatacaustic.html Weisstein, Eric W. "Tschirnhausen Cubic Catacaustic." From MathWorld--A Wolfram Web Resource.]
* [http://mathworld.wolfram.com/TschirnhausenCubicCatacaustic.html Weisstein, Eric W. "Tschirnhausen Cubic Catacaustic." From MathWorld--A Wolfram Web Resource.]
* [http://en.wikipedia.org/wiki/Caustic_%28mathematics%29 Wikipedia on Caustics]
===The underlying JavaScript code===
===The underlying JavaScript code===
<source lang="javascript">
<source lang="javascript">
Line 72: Line 75:


var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});
var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});
var reflectionpoint = brd.create('glider',[-7,1,cubic],{name:'point of reflection'});
var dir = brd.create('segment',[radpoint,reflectionpoint],{strokeWidth:1});
var infty = brd.create('point',
    [
      function(){
            var a = dir.stdform[1], b = dir.stdform[2],
                t = reflectionpoint.position,
                u = JXG.Math.Numerics.D(cubic.X)(t),
                v = JXG.Math.Numerics.D(cubic.Y)(t),
                dirx = a*v*v-2*b*u*v-a*u*u,
                diry = b*u*u-2*a*u*v-b*v*v;
            return [0, diry, -dirx]; 
      }
    ],{name:'', visible:false});
var reflection = brd.create('line',
      [reflectionpoint,infty],
      {strokeWidth:1, straightFirst:false, trace:true});


var cataustic = brd.create('curve',
var cataustic = brd.create('curve',
Line 78: Line 99:
                 -4, 4
                 -4, 4
                 ],
                 ],
                 {strokeWidth:1, strokeColor:'red'});
                 {strokeWidth:3, strokeColor:'red'});
brd.unsuspendUpdate();
brd.unsuspendUpdate();
</source>
</source>

Latest revision as of 14:26, 13 January 2011

The Tschirnhausen cubic (black curve) is defined parametrically as

[math]\displaystyle{ x = a3(t^2-3) }[/math]
[math]\displaystyle{ y = at(t^2-3) }[/math]

Its catacaustic (red curve) with radiant point [math]\displaystyle{ (-8a,p) }[/math] is the semicubical parabola with parametric equations

[math]\displaystyle{ x = a6(t^2-1) }[/math]
[math]\displaystyle{ y = a4t^3 }[/math]

The catacaustic is the envelope of the rays reflected by the Tschirnhausen cubic. The ray's source is the radiant point.

You can get a feeling why the red curve is called envelope of the blue line if you drag the point of reflection.

References

The underlying JavaScript code

var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-10,10,10,-10], keepaspectratio:true, axis:true});
brd.suspendUpdate();
var a = brd.create('slider',[[-5,6],[5,6],[-5,1,5]], {name:'a'});

var cubic = brd.create('curve',
             [function(t){ return a.Value()*3*(t*t-3);},
              function(t){ return a.Value()*t*(t*t-3);},
              -5, 5
             ],
             {strokeWidth:1, strokeColor:'black'});

var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});
var reflectionpoint = brd.create('glider',[-7,1,cubic],{name:'point of reflection'});
var dir = brd.create('segment',[radpoint,reflectionpoint],{strokeWidth:1});
var infty = brd.create('point',
     [
       function(){ 
            var a = dir.stdform[1], b = dir.stdform[2],
                t = reflectionpoint.position,
                u = JXG.Math.Numerics.D(cubic.X)(t), 
                v = JXG.Math.Numerics.D(cubic.Y)(t),
                dirx = a*v*v-2*b*u*v-a*u*u,
                diry = b*u*u-2*a*u*v-b*v*v;
            return [0, diry, -dirx];  
       }
     ],{name:'', visible:false});

var reflection = brd.create('line',
       [reflectionpoint,infty],
       {strokeWidth:1, straightFirst:false, trace:true});

var cataustic = brd.create('curve',
                 [function(t){ return a.Value()*6*(t*t-1);},
                  function(t){ return a.Value()*4*t*t*t;},
                 -4, 4
                 ],
                 {strokeWidth:3, strokeColor:'red'});
brd.unsuspendUpdate();