Tschirnhausen Cubic Catacaustic: Difference between revisions

From JSXGraph Wiki
No edit summary
No edit summary
 
(35 intermediate revisions by the same user not shown)
Line 1: Line 1:
A semicubical parabola is a curve defined parametrically as
The Tschirnhausen cubic (black curve) is defined parametrically as


:<math> x = t^2 </math>
:<math> x = a3(t^2-3) </math>


:<math> y = at^3 </math>
:<math> y = at(t^2-3) </math>
Its catacaustic (red curve) with radiant point <math>(-8a,p)</math>
is the semicubical parabola with parametric equations


:<math> x = a6(t^2-1) </math>
:<math> y = a4t^3 </math>
The catacaustic is the envelope of the rays reflected by the Tschirnhausen cubic.
The ray's source is the ''radiant point''.
You can get a feeling why the red curve is called ''envelope'' of the blue line if you drag the ''point of reflection''.
<jsxgraph width="600" height="600">
<jsxgraph width="600" height="600">
(function(){
(function(){
Line 12: Line 22:


var cubic = brd.create('curve',
var cubic = brd.create('curve',
             [function(t){ return 3*a.Value()*(3-3*t*t);},
             [function(t){ return a.Value()*3*(t*t-3);},
               function(t){ return a.Value()*t*(3-t*t);},
               function(t){ return a.Value()*t*(t*t-3);},
               -2, 2
               -5, 5
             ],
             ],
             {strokeWidth:1, strokeColor:'black'});
             {strokeWidth:1, strokeColor:'black'});
var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});
var reflectionpoint = brd.create('glider',[-7,1,cubic],{name:'point of reflection'});
var dir = brd.create('segment',[radpoint,reflectionpoint],{strokeWidth:1});
var infty = brd.create('point',
    [
      function(){
            var a = dir.stdform[1], b = dir.stdform[2],
                t = reflectionpoint.position,
                u = JXG.Math.Numerics.D(cubic.X)(t),
                v = JXG.Math.Numerics.D(cubic.Y)(t),
                dirx = a*v*v-2*b*u*v-a*u*u,
                diry = b*u*u-2*a*u*v-b*v*v;
            return [0, diry, -dirx]; 
      }
    ],{name:'', visible:false});
var reflection = brd.create('line',
      [reflectionpoint,infty],
      {strokeWidth:1, straightFirst:false, trace:true});


var cataustic = brd.create('curve',
var cataustic = brd.create('curve',
                 [function(t){ return a.Value()*6*(t*t-1);},
                 [function(t){ return a.Value()*6*(t*t-1);},
                   function(t){ return a.Value()*4*t*t*t;},
                   function(t){ return a.Value()*4*t*t*t;},
                 -2, 2
                 -4, 4
                 ],
                 ],
                 {strokeWidth:1, strokeColor:'red'});
                 {strokeWidth:3, strokeColor:'red'});
 
brd.unsuspendUpdate();
brd.unsuspendUpdate();
})();
})();
Line 30: Line 59:


===References===
===References===
 
* [http://mathworld.wolfram.com/TschirnhausenCubicCatacaustic.html Weisstein, Eric W. "Tschirnhausen Cubic Catacaustic." From MathWorld--A Wolfram Web Resource.]
* [http://en.wikipedia.org/wiki/Caustic_%28mathematics%29 Wikipedia on Caustics]
===The underlying JavaScript code===
===The underlying JavaScript code===
<source lang="javascript">
<source lang="javascript">
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-10,10,10,-10], keepaspectratio:true, axis:true});
brd.suspendUpdate();
var a = brd.create('slider',[[-5,6],[5,6],[-5,1,5]], {name:'a'});
var cubic = brd.create('curve',
            [function(t){ return a.Value()*3*(t*t-3);},
              function(t){ return a.Value()*t*(t*t-3);},
              -5, 5
            ],
            {strokeWidth:1, strokeColor:'black'});
var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});
var reflectionpoint = brd.create('glider',[-7,1,cubic],{name:'point of reflection'});
var dir = brd.create('segment',[radpoint,reflectionpoint],{strokeWidth:1});
var infty = brd.create('point',
    [
      function(){
            var a = dir.stdform[1], b = dir.stdform[2],
                t = reflectionpoint.position,
                u = JXG.Math.Numerics.D(cubic.X)(t),
                v = JXG.Math.Numerics.D(cubic.Y)(t),
                dirx = a*v*v-2*b*u*v-a*u*u,
                diry = b*u*u-2*a*u*v-b*v*v;
            return [0, diry, -dirx]; 
      }
    ],{name:'', visible:false});
var reflection = brd.create('line',
      [reflectionpoint,infty],
      {strokeWidth:1, straightFirst:false, trace:true});
var cataustic = brd.create('curve',
                [function(t){ return a.Value()*6*(t*t-1);},
                  function(t){ return a.Value()*4*t*t*t;},
                -4, 4
                ],
                {strokeWidth:3, strokeColor:'red'});
brd.unsuspendUpdate();
</source>
</source>


[[Category:Examples]]
[[Category:Examples]]
[[Category:Curves]]
[[Category:Curves]]

Latest revision as of 14:26, 13 January 2011

The Tschirnhausen cubic (black curve) is defined parametrically as

[math]\displaystyle{ x = a3(t^2-3) }[/math]
[math]\displaystyle{ y = at(t^2-3) }[/math]

Its catacaustic (red curve) with radiant point [math]\displaystyle{ (-8a,p) }[/math] is the semicubical parabola with parametric equations

[math]\displaystyle{ x = a6(t^2-1) }[/math]
[math]\displaystyle{ y = a4t^3 }[/math]

The catacaustic is the envelope of the rays reflected by the Tschirnhausen cubic. The ray's source is the radiant point.

You can get a feeling why the red curve is called envelope of the blue line if you drag the point of reflection.

References

The underlying JavaScript code

var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-10,10,10,-10], keepaspectratio:true, axis:true});
brd.suspendUpdate();
var a = brd.create('slider',[[-5,6],[5,6],[-5,1,5]], {name:'a'});

var cubic = brd.create('curve',
             [function(t){ return a.Value()*3*(t*t-3);},
              function(t){ return a.Value()*t*(t*t-3);},
              -5, 5
             ],
             {strokeWidth:1, strokeColor:'black'});

var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});
var reflectionpoint = brd.create('glider',[-7,1,cubic],{name:'point of reflection'});
var dir = brd.create('segment',[radpoint,reflectionpoint],{strokeWidth:1});
var infty = brd.create('point',
     [
       function(){ 
            var a = dir.stdform[1], b = dir.stdform[2],
                t = reflectionpoint.position,
                u = JXG.Math.Numerics.D(cubic.X)(t), 
                v = JXG.Math.Numerics.D(cubic.Y)(t),
                dirx = a*v*v-2*b*u*v-a*u*u,
                diry = b*u*u-2*a*u*v-b*v*v;
            return [0, diry, -dirx];  
       }
     ],{name:'', visible:false});

var reflection = brd.create('line',
       [reflectionpoint,infty],
       {strokeWidth:1, straightFirst:false, trace:true});

var cataustic = brd.create('curve',
                 [function(t){ return a.Value()*6*(t*t-1);},
                  function(t){ return a.Value()*4*t*t*t;},
                 -4, 4
                 ],
                 {strokeWidth:3, strokeColor:'red'});
brd.unsuspendUpdate();