Least-squares line fitting: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
(19 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
This little JXSGraph application finds the line | This little JXSGraph application finds the line or the circle which is the best fit for given set of points. | ||
If the resulting line is green, it is a straight line. If the line is blue, it is a circle. | |||
<jsxgraph width="600" height="600"> | <jsxgraph width="600" height="600"> | ||
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5], keepaspectratio:true, axis:true}); | var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5], keepaspectratio:true, axis:true}); | ||
var i, | brd.suspendUpdate(); | ||
// Experiments with lines and circles: | |||
// 1) Plot random points on a line disturbed by a random factor | |||
var i, p1 = [], angle, xr, yr, delta = 0.1; | |||
// Random points are constructed which lie roughly on a line | // Random points are constructed which lie roughly on a line | ||
// defined by y = 0.3*x+1. | // defined by y = 0.3*x+1. | ||
// delta*0.5 is the maximal distance in y-direction of the random | // delta*0.5 is the maximal distance in y-direction of the random | ||
// points from the line. | // points from the line. | ||
brd.suspendUpdate(); | |||
for (i=0;i<100;i++) { | |||
yr = 10*(Math.random()-0.5); | |||
xr = 0.*yr+delta*(Math.random()-0.5); | |||
p1.push(brd.create('point',[xr, yr], {withLabel:false})); | |||
} | |||
// 2) Plot random points on a circle disturbed by a random factor | |||
var i, p2 = [], angle, co, si, delta = 0.2; | |||
// Random points are constructed which lie roughly on a circle | |||
// of radius 4 having the origin as center. | |||
// delta*0.5 is the maximal distance in x- and y- direction of the random | |||
// points from the circle line. | |||
for (i=0;i<100;i++) { | |||
angle = Math.random()*2*Math.PI; | |||
co = 4*Math.cos(angle)+delta*(Math.random()-0.5); | |||
si = 4*Math.sin(angle)+delta*(Math.random()-0.5); | |||
p2.push(brd.create('point',[co+2, si-1], {withLabel:false})); | |||
} | |||
brd.unsuspendUpdate(); | |||
// | |||
// bestFit, the best-fitting circle or line is found by least-squares fitting. | |||
// | |||
var bestFit = function(p) { | |||
var i, j, r = [], rbar = [], x = [], y = [], z = [], A = [[0,0,0],[0,0,0],[0,0,0]], n, d, | |||
eigen, minIndex, minE, ev, c, xm, ym, zm, radius; | |||
n = p.length; | |||
for (i=0;i<n;i++) { | |||
r.push([1.0, p[i].X(), p[i].Y()]); | |||
d = r[i][0]*r[i][0] + r[i][1]*r[i][1] + r[i][2]*r[i][2]; | |||
r[i][0] = 1.0 - r[i][0]/d; | |||
r[i][1] /= d; | |||
r[i][2] /= d; | |||
} | |||
for (j=0;j<3;j++) { | |||
for (i=0,d=0;i<n;i++) { | |||
d += r[i][j]; | |||
} | |||
d /= n; | |||
rbar[j] = d; | |||
for (i=0;i<n;i++) { | |||
r[i][j] -= d; | |||
} | |||
} | |||
for (i=0;i<n;i++) { | |||
A[0][0] += r[i][0]*r[i][0]; | |||
A[0][1] += r[i][0]*r[i][1]; | |||
A[0][2] += r[i][0]*r[i][2]; | |||
A[1][0] += r[i][1]*r[i][0]; | |||
A[1][1] += r[i][1]*r[i][1]; | |||
A[1][2] += r[i][1]*r[i][2]; | |||
A[2][0] += r[i][2]*r[i][0]; | |||
A[2][1] += r[i][2]*r[i][1]; | |||
A[2][2] += r[i][2]*r[i][2]; | |||
} | |||
eigen = JXG.Math.Numerics.Jacobi(A); | |||
minIndex = 0; | |||
minE = eigen[0][0][0]; | |||
for (j=1;j<3;j++) { | |||
if (eigen[0][j][j]<minE) { | |||
minIndex = j; | |||
minE = eigen[0][j][j]; | |||
} | |||
} | |||
ev = [eigen[1][0][minIndex],eigen[1][1][minIndex],eigen[1][2][minIndex]]; | |||
c = -(rbar[0]*ev[0]+rbar[1]*ev[1]+rbar[2]*ev[2]); | |||
xm = -ev[1]; | |||
ym = -ev[2]; | |||
zm = 2.0*(c+ev[0]); | |||
//console.log(c, c+ev[0]); | |||
// If c is close to zero, the best fittting object is a line. | |||
// The best threshold parameter has yet to be determined. | |||
// At the moment it is set to 0.01. | |||
if (Math.abs(c)<0.01) { | |||
brd.create('line',[zm,xm,ym], {strokeColor:'green'}); | |||
} else { | |||
radius = Math.sqrt((xm*xm+ym*ym-2*c*zm)/(zm*zm)); | |||
brd.create('circle',[[zm,xm,ym],radius]); | |||
} | |||
}; // end of bestFit() | |||
bestFit(p1); | |||
bestFit(p2); | |||
</jsxgraph> | |||
===The underlying JavaScript code=== | |||
<source lang="javascript"> | |||
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5], keepaspectratio:true, axis:true}); | |||
brd.suspendUpdate(); | brd.suspendUpdate(); | ||
for (i=0;i< | |||
// Experiments with lines and circles: | |||
// 1) Plot random points on a line disturbed by a random factor | |||
} | var i, p1 = [], angle, xr, yr, delta = 0.1; | ||
// Random points are constructed which lie roughly on a line | |||
// defined by y = 0.3*x+1. | |||
// delta*0.5 is the maximal distance in y-direction of the random | |||
// points from the line. | |||
brd.suspendUpdate(); | |||
for (i=0;i<100;i++) { | |||
yr = 10*(Math.random()-0.5); | |||
xr = 0.*yr+delta*(Math.random()-0.5); | |||
p1.push(brd.create('point',[xr, yr], {withLabel:false})); | |||
} | |||
// 2) Plot random points on a circle disturbed by a random factor | |||
var i, p2 = [], angle, co, si, delta = 0.2; | |||
// Random points are constructed which lie roughly on a circle | |||
// of radius 4 having the origin as center. | |||
// delta*0.5 is the maximal distance in x- and y- direction of the random | |||
// points from the circle line. | |||
for (i=0;i<100;i++) { | |||
angle = Math.random()*2*Math.PI; | |||
co = 4*Math.cos(angle)+delta*(Math.random()-0.5); | |||
si = 4*Math.sin(angle)+delta*(Math.random()-0.5); | |||
p2.push(brd.create('point',[co+2, si-1], {withLabel:false})); | |||
} | |||
brd.unsuspendUpdate(); | brd.unsuspendUpdate(); | ||
var | // | ||
n = p.length; | // bestFit, the best-fitting circle or line is found by least-squares fitting. | ||
for (i=0;i<n;i++) { | // | ||
var bestFit = function(p) { | |||
var i, j, r = [], rbar = [], x = [], y = [], z = [], A = [[0,0,0],[0,0,0],[0,0,0]], n, d, | |||
} | eigen, minIndex, minE, ev, c, xm, ym, zm, radius; | ||
n = p.length; | |||
for (i=0;i<n;i++) { | |||
r.push([1.0, p[i].X(), p[i].Y()]); | |||
d = r[i][0]*r[i][0] + r[i][1]*r[i][1] + r[i][2]*r[i][2]; | |||
r[i][0] = 1.0 - r[i][0]/d; | |||
r[i][1] /= d; | |||
r[i][2] /= d; | |||
} | |||
for (j=0;j<3;j++) { | |||
/ | for (i=0,d=0;i<n;i++) { | ||
d += r[i][j]; | |||
} | |||
d /= n; | |||
rbar[j] = d; | |||
for (i=0;i<n;i++) { | |||
r[i][j] -= d; | |||
} | |||
} | |||
for (i=0;i<n;i++) { | |||
A[0][0] += r[i][0]*r[i][0]; | |||
A[0][1] += r[i][0]*r[i][1]; | |||
A[0][2] += r[i][0]*r[i][2]; | |||
A[1][0] += r[i][1]*r[i][0]; | |||
A[1][1] += r[i][1]*r[i][1]; | |||
A[1][2] += r[i][1]*r[i][2]; | |||
A[2][0] += r[i][2]*r[i][0]; | |||
A[2][1] += r[i][2]*r[i][1]; | |||
A[2][2] += r[i][2]*r[i][2]; | |||
} | |||
eigen = JXG.Math.Numerics.Jacobi(A); | |||
minIndex = 0; | |||
minE = eigen[0][0][0]; | |||
for (j=1;j<3;j++) { | |||
if (eigen[0][j][j]<minE) { | |||
minIndex = j; | |||
minE = eigen[0][j][j]; | |||
} | |||
} | |||
ev = [eigen[1][0][minIndex],eigen[1][1][minIndex],eigen[1][2][minIndex]]; | |||
c = -(rbar[0]*ev[0]+rbar[1]*ev[1]+rbar[2]*ev[2]); | |||
xm = -ev[1]; | |||
ym = -ev[2]; | |||
zm = 2.0*(c+ev[0]); | |||
//console.log(c, c+ev[0]); | |||
// | // If c is close to zero, the best fittting object is a line. | ||
// | // The best threshold parameter has yet to be determined. | ||
// is | // At the moment it is set to 0.01. | ||
if (Math.abs(c)<0.01) { | |||
brd.create('line',[zm,xm,ym], {strokeColor:'green'}); | |||
} else { | |||
radius = Math.sqrt((xm*xm+ym*ym-2*c*zm)/(zm*zm)); | |||
brd.create('circle',[[zm,xm,ym],radius]); | |||
} | |||
}; // end of bestFit() | |||
bestFit(p1); | |||
bestFit(p2); | |||
</source> | |||
[[Category:Examples]] | [[Category:Examples]] | ||
[[Category:Statistics]] | [[Category:Statistics]] |
Latest revision as of 18:16, 9 November 2010
This little JXSGraph application finds the line or the circle which is the best fit for given set of points. If the resulting line is green, it is a straight line. If the line is blue, it is a circle.
The underlying JavaScript code
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5], keepaspectratio:true, axis:true});
brd.suspendUpdate();
// Experiments with lines and circles:
// 1) Plot random points on a line disturbed by a random factor
var i, p1 = [], angle, xr, yr, delta = 0.1;
// Random points are constructed which lie roughly on a line
// defined by y = 0.3*x+1.
// delta*0.5 is the maximal distance in y-direction of the random
// points from the line.
brd.suspendUpdate();
for (i=0;i<100;i++) {
yr = 10*(Math.random()-0.5);
xr = 0.*yr+delta*(Math.random()-0.5);
p1.push(brd.create('point',[xr, yr], {withLabel:false}));
}
// 2) Plot random points on a circle disturbed by a random factor
var i, p2 = [], angle, co, si, delta = 0.2;
// Random points are constructed which lie roughly on a circle
// of radius 4 having the origin as center.
// delta*0.5 is the maximal distance in x- and y- direction of the random
// points from the circle line.
for (i=0;i<100;i++) {
angle = Math.random()*2*Math.PI;
co = 4*Math.cos(angle)+delta*(Math.random()-0.5);
si = 4*Math.sin(angle)+delta*(Math.random()-0.5);
p2.push(brd.create('point',[co+2, si-1], {withLabel:false}));
}
brd.unsuspendUpdate();
//
// bestFit, the best-fitting circle or line is found by least-squares fitting.
//
var bestFit = function(p) {
var i, j, r = [], rbar = [], x = [], y = [], z = [], A = [[0,0,0],[0,0,0],[0,0,0]], n, d,
eigen, minIndex, minE, ev, c, xm, ym, zm, radius;
n = p.length;
for (i=0;i<n;i++) {
r.push([1.0, p[i].X(), p[i].Y()]);
d = r[i][0]*r[i][0] + r[i][1]*r[i][1] + r[i][2]*r[i][2];
r[i][0] = 1.0 - r[i][0]/d;
r[i][1] /= d;
r[i][2] /= d;
}
for (j=0;j<3;j++) {
for (i=0,d=0;i<n;i++) {
d += r[i][j];
}
d /= n;
rbar[j] = d;
for (i=0;i<n;i++) {
r[i][j] -= d;
}
}
for (i=0;i<n;i++) {
A[0][0] += r[i][0]*r[i][0];
A[0][1] += r[i][0]*r[i][1];
A[0][2] += r[i][0]*r[i][2];
A[1][0] += r[i][1]*r[i][0];
A[1][1] += r[i][1]*r[i][1];
A[1][2] += r[i][1]*r[i][2];
A[2][0] += r[i][2]*r[i][0];
A[2][1] += r[i][2]*r[i][1];
A[2][2] += r[i][2]*r[i][2];
}
eigen = JXG.Math.Numerics.Jacobi(A);
minIndex = 0;
minE = eigen[0][0][0];
for (j=1;j<3;j++) {
if (eigen[0][j][j]<minE) {
minIndex = j;
minE = eigen[0][j][j];
}
}
ev = [eigen[1][0][minIndex],eigen[1][1][minIndex],eigen[1][2][minIndex]];
c = -(rbar[0]*ev[0]+rbar[1]*ev[1]+rbar[2]*ev[2]);
xm = -ev[1];
ym = -ev[2];
zm = 2.0*(c+ev[0]);
//console.log(c, c+ev[0]);
// If c is close to zero, the best fittting object is a line.
// The best threshold parameter has yet to be determined.
// At the moment it is set to 0.01.
if (Math.abs(c)<0.01) {
brd.create('line',[zm,xm,ym], {strokeColor:'green'});
} else {
radius = Math.sqrt((xm*xm+ym*ym-2*c*zm)/(zm*zm));
brd.create('circle',[[zm,xm,ym],radius]);
}
}; // end of bestFit()
bestFit(p1);
bestFit(p2);