Systems of differential equations: Difference between revisions
From JSXGraph Wiki
| A WASSERMANN (talk | contribs) No edit summary | A WASSERMANN (talk | contribs) No edit summary | ||
| Line 17: | Line 17: | ||
| function doIt() { | function doIt() { | ||
|    var  |    var txt1 = JXG.GeonextParser.geonext2JS(document.getElementById("odeinput1").value); | ||
|    f = new Function("x", "yy", "var  |   var txt2 = JXG.GeonextParser.geonext2JS(document.getElementById("odeinput2").value); | ||
|    f = new Function("x", "yy", "var y1 = yy[0], y1 = yy[1];  var z1 = " + txt1 + "; var z2 = " + txt2 + "; return [z1,z2];"); | |||
|    brd.update(); |    brd.update(); | ||
| } | } | ||
| function ode() { | function ode() { | ||
|     return JXG.Math.Numerics.rungeKutta(JXG.Math.Numerics.predefinedButcher.Heun, [P1.Y()], [P1.X(), P1.X()+N.Value()], 200, f); |     return JXG.Math.Numerics.rungeKutta(JXG.Math.Numerics.predefinedButcher.Heun, [P1.Y(),P2.Y()], [P1.X(), P1.X()+N.Value()], 200, f); | ||
| } | } | ||
| var  | var g1 = brd.createElement('curve', [[0],[0]], {strokeColor:'red', strokeWidth:'2px'}); | ||
| var g2 = brd.createElement('curve', [[0],[0]], {strokeColor:'black', strokeWidth:'2px'}); | |||
| g1.updateDataArray = function() { | |||
|      var data = ode(); |      var data = ode(); | ||
|      var h = N.Value()/200; |      var h = N.Value()/200; | ||
| Line 35: | Line 37: | ||
|          this.dataX[i] = P1.X()+i*h; |          this.dataX[i] = P1.X()+i*h; | ||
|          this.dataY[i] = data[i][0]; |          this.dataY[i] = data[i][0]; | ||
|     } | |||
| }; | |||
| g2.updateDataArray = function() { | |||
|     var data = ode(); | |||
|     var h = N.Value()/200; | |||
|     this.dataX = []; | |||
|     this.dataY = []; | |||
|     for(var i=0; i<data.length; i++) { | |||
|         this.dataX[i] = P2.X()+i*h; | |||
|         this.dataY[i] = data[i][1]; | |||
|      } |      } | ||
| }; | }; | ||
| doIt(); | doIt(); | ||
| </jsxgraph> | </jsxgraph> | ||
Revision as of 08:50, 21 July 2010
Display solutions of the ordinary differential equation
- [math]\displaystyle{ y_1'= f_1(x,y_1,y_2) }[/math]
- [math]\displaystyle{ y_2'= f_2(x,y_1,y_2) }[/math]
with initial values [math]\displaystyle{ (x_0,y_1) }[/math], [math]\displaystyle{ (x_0,y_2) }[/math].
