<iframe src="http://jsxgraph.org/share/iframe/hyperbola-principal-axis-transformation" style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" name="JSXGraph example: Hyperbola: principal axis transformation" allowfullscreen ></iframe>
<div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; "> <div id="board-0" class="jxgbox" style="aspect-ratio: 1 / 1; width: 100%;" data-ar="1 / 1"></div> </div> <script type = "text/javascript"> /* This example is licensed under a Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const BOARDID = 'board-0'; JXG.Options.label.autoPosition = true; JXG.Options.text.fontSize = 16; JXG.Options.line.strokeWidth = 0.8; JXG.Options.point.size = 1; const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-5, 5, 5, -5], axis: true, showClearTraces: true}); const sq5 = Math.sqrt(5); // Start with the Euclidean normal form of the quadric, // because we easily can read off the focal points. var f1 = board.create('point', [0, -sq5], {name:"f'", fixed: true}); var f2 = board.create('point', [0, sq5], {name:"f", fixed: true}); var p = board.create('point', [2, Math.sqrt(2)], {name:"p", fixed: true}); var o = board.create('point', [0, 0], {withLabel:false, color: 'blue', fixed: true, trace:true}); var e1 = board.create('point', [1, 0], {withLabel:false, color: 'blue', fixed: true}); var e2 = board.create('point', [0, 1], {withLabel:false, color: 'blue', fixed: true}); // Undo the principal axis transformation to recompute the original form of the quadric var phi0 = board.create('transform', [-Math.PI * 0.25], {type: 'rotate'}); var t0 = board.create('transform', [-2, 1], {type: 'translate'}); t0.bindTo([f1, f2, p, o, e1, e2]); phi0.bindTo([f1, f2, p, o, e1, e2]); var hyp = board.create('hyperbola', [f1, f2, p]); // Create transformed axes var ax_z1 = board.create('line', [o, e1], {lastArrow: true, strokeColor:'black'}); var ax_z2 = board.create('line', [o, e2], {lastArrow: true, strokeColor:'black'}); board.update(); // Visualization of the principal axis transformation var alpha = board.create('slider', [[1,4], [3,4], [0, 0, 45]], {name:'α', unitLabel:'°'}); var f = board.create('slider', [[1,3.5], [3,3.5], [0, 0, 1]], {name:'f'}); var phi = board.create('transform', [function(){ return alpha.Value() * Math.PI / 180; }], {type: 'rotate'}); var t = board.create('transform', [function(){ return 2*f.Value(); }, function(){ return -f.Value(); }], {type: 'translate'}); phi.bindTo([f1, f2, p, e1, e2, o]); t.bindTo([f1, f2, p, e1, e2, o]); </script>
/* This example is licensed under a Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const BOARDID = 'your_div_id'; // Insert your id here! JXG.Options.label.autoPosition = true; JXG.Options.text.fontSize = 16; JXG.Options.line.strokeWidth = 0.8; JXG.Options.point.size = 1; const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-5, 5, 5, -5], axis: true, showClearTraces: true}); const sq5 = Math.sqrt(5); // Start with the Euclidean normal form of the quadric, // because we easily can read off the focal points. var f1 = board.create('point', [0, -sq5], {name:"f'", fixed: true}); var f2 = board.create('point', [0, sq5], {name:"f", fixed: true}); var p = board.create('point', [2, Math.sqrt(2)], {name:"p", fixed: true}); var o = board.create('point', [0, 0], {withLabel:false, color: 'blue', fixed: true, trace:true}); var e1 = board.create('point', [1, 0], {withLabel:false, color: 'blue', fixed: true}); var e2 = board.create('point', [0, 1], {withLabel:false, color: 'blue', fixed: true}); // Undo the principal axis transformation to recompute the original form of the quadric var phi0 = board.create('transform', [-Math.PI * 0.25], {type: 'rotate'}); var t0 = board.create('transform', [-2, 1], {type: 'translate'}); t0.bindTo([f1, f2, p, o, e1, e2]); phi0.bindTo([f1, f2, p, o, e1, e2]); var hyp = board.create('hyperbola', [f1, f2, p]); // Create transformed axes var ax_z1 = board.create('line', [o, e1], {lastArrow: true, strokeColor:'black'}); var ax_z2 = board.create('line', [o, e2], {lastArrow: true, strokeColor:'black'}); board.update(); // Visualization of the principal axis transformation var alpha = board.create('slider', [[1,4], [3,4], [0, 0, 45]], {name:'α', unitLabel:'°'}); var f = board.create('slider', [[1,3.5], [3,3.5], [0, 0, 1]], {name:'f'}); var phi = board.create('transform', [function(){ return alpha.Value() * Math.PI / 180; }], {type: 'rotate'}); var t = board.create('transform', [function(){ return 2*f.Value(); }, function(){ return -f.Value(); }], {type: 'translate'}); phi.bindTo([f1, f2, p, e1, e2, o]); t.bindTo([f1, f2, p, e1, e2, o]);
<jsxgraph width="100%" aspect-ratio="1 / 1" title="Hyperbola: principal axis transformation" description="This construction was copied from JSXGraph examples database: BTW HERE SHOULD BE A GENERATED LINKuseGlobalJS="false"> /* This example is licensed under a Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ JXG.Options.label.autoPosition = true; JXG.Options.text.fontSize = 16; JXG.Options.line.strokeWidth = 0.8; JXG.Options.point.size = 1; const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-5, 5, 5, -5], axis: true, showClearTraces: true}); const sq5 = Math.sqrt(5); // Start with the Euclidean normal form of the quadric, // because we easily can read off the focal points. var f1 = board.create('point', [0, -sq5], {name:"f'", fixed: true}); var f2 = board.create('point', [0, sq5], {name:"f", fixed: true}); var p = board.create('point', [2, Math.sqrt(2)], {name:"p", fixed: true}); var o = board.create('point', [0, 0], {withLabel:false, color: 'blue', fixed: true, trace:true}); var e1 = board.create('point', [1, 0], {withLabel:false, color: 'blue', fixed: true}); var e2 = board.create('point', [0, 1], {withLabel:false, color: 'blue', fixed: true}); // Undo the principal axis transformation to recompute the original form of the quadric var phi0 = board.create('transform', [-Math.PI * 0.25], {type: 'rotate'}); var t0 = board.create('transform', [-2, 1], {type: 'translate'}); t0.bindTo([f1, f2, p, o, e1, e2]); phi0.bindTo([f1, f2, p, o, e1, e2]); var hyp = board.create('hyperbola', [f1, f2, p]); // Create transformed axes var ax_z1 = board.create('line', [o, e1], {lastArrow: true, strokeColor:'black'}); var ax_z2 = board.create('line', [o, e2], {lastArrow: true, strokeColor:'black'}); board.update(); // Visualization of the principal axis transformation var alpha = board.create('slider', [[1,4], [3,4], [0, 0, 45]], {name:'α', unitLabel:'°'}); var f = board.create('slider', [[1,3.5], [3,3.5], [0, 0, 1]], {name:'f'}); var phi = board.create('transform', [function(){ return alpha.Value() * Math.PI / 180; }], {type: 'rotate'}); var t = board.create('transform', [function(){ return 2*f.Value(); }, function(){ return -f.Value(); }], {type: 'translate'}); phi.bindTo([f1, f2, p, e1, e2, o]); t.bindTo([f1, f2, p, e1, e2, o]); </jsxgraph>
// Define the id of your board in BOARDID JXG.Options.label.autoPosition = true; JXG.Options.text.fontSize = 16; JXG.Options.line.strokeWidth = 0.8; JXG.Options.point.size = 1; const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-5, 5, 5, -5], axis: true, showClearTraces: true}); const sq5 = Math.sqrt(5); // Start with the Euclidean normal form of the quadric, // because we easily can read off the focal points. var f1 = board.create('point', [0, -sq5], {name:"f'", fixed: true}); var f2 = board.create('point', [0, sq5], {name:"f", fixed: true}); var p = board.create('point', [2, Math.sqrt(2)], {name:"p", fixed: true}); var o = board.create('point', [0, 0], {withLabel:false, color: 'blue', fixed: true, trace:true}); var e1 = board.create('point', [1, 0], {withLabel:false, color: 'blue', fixed: true}); var e2 = board.create('point', [0, 1], {withLabel:false, color: 'blue', fixed: true}); // Undo the principal axis transformation to recompute the original form of the quadric var phi0 = board.create('transform', [-Math.PI * 0.25], {type: 'rotate'}); var t0 = board.create('transform', [-2, 1], {type: 'translate'}); t0.bindTo([f1, f2, p, o, e1, e2]); phi0.bindTo([f1, f2, p, o, e1, e2]); var hyp = board.create('hyperbola', [f1, f2, p]); // Create transformed axes var ax_z1 = board.create('line', [o, e1], {lastArrow: true, strokeColor:'black'}); var ax_z2 = board.create('line', [o, e2], {lastArrow: true, strokeColor:'black'}); board.update(); // Visualization of the principal axis transformation var alpha = board.create('slider', [[1,4], [3,4], [0, 0, 45]], {name:'α', unitLabel:'°'}); var f = board.create('slider', [[1,3.5], [3,3.5], [0, 0, 1]], {name:'f'}); var phi = board.create('transform', [function(){ return alpha.Value() * Math.PI / 180; }], {type: 'rotate'}); var t = board.create('transform', [function(){ return 2*f.Value(); }, function(){ return -f.Value(); }], {type: 'translate'}); phi.bindTo([f1, f2, p, e1, e2, o]); t.bindTo([f1, f2, p, e1, e2, o]);
This example is licensed under a Creative Commons Attribution 4.0 International License. Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits.