Home
Random example
Search
Applications
Chemistry
Economy
Famous theorems
Geography
Physics
Sports
Test
Assessment
Calculus
3D
Applied calculus
Basic calculus
Differential equations
Function plotting
Implicit plotting
Sequences and series
Charts and data
Charts
Statistics
Curves
Interpolation
Intersection, Union, Difference
Lindenmayer Systems
Splines
Geometry
3D
Analytic
Euclidean
Basic constructions
Mappings
Non-Euclidean
Projective
Symmetry
Technical
Animation
Roulettes
Board options
First steps
Images
JSXGraph objects
Arcs and angles
Axes
Circles
Groups
Lines and arrows
Point
Polygons
Slider
Turtle
Vectors
JessieCode
Texts
Transformations
Video
jsxgraph.org
JSXGraph logo
JSXGraph
JSXGraph share

Share

Waveforms: pulse and sawtooth
Show plain example
QR code
<iframe 
    src="http://jsxgraph.org/share/iframe/waveforms-pulse-and-sawtooth" 
    style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" 
    name="JSXGraph example: Waveforms: pulse and sawtooth" 
    allowfullscreen
></iframe>
This code has to
<div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; ">
   <div id="board-0" class="jxgbox" style="aspect-ratio: 12 / 10; width: 100%;" data-ar="12 / 10"></div>
</div>

<script type = "text/javascript"> 
    /*
    This example is licensed under a 
    Creative Commons Attribution 4.0 International License.
    https://creativecommons.org/licenses/by/4.0/
    
    Please note you have to mention 
    The Center of Mobile Learning with Digital Technology
    in the credits.
    */
    
    const BOARDID = 'board-0';

    const board = JXG.JSXGraph.initBoard(BOARDID, {
        axis: true, boundingbox: [-6, 5, 6, -5]
    });
    
    var s = board.create('slider', [[0.75, -2], [4.5, -2], [0, 0, 10]], {name: 'S', snapWidth: 1});
    
    board.create('functiongraph', [
        function(t) {
            var val = 0, sv = s.Value() + 1,  k;
    
            for (k = 1; k <= sv; k++) {
                val += Math.pow(-1, k) * Math.sin(2 * Math.PI * k * t) / k;
            }
            return val + 2;
        }, -10, 10
    ], {strokeColor: '#bb0000'});
    
    board.create('functiongraph', [
        function(t) {
            var val = 0, sv = s.Value() + 1, k;
    
            for (k = 1; k <= sv; k++) {
                val += Math.sin(2 * Math.PI * (2 * k - 1) * t) / (2 * k - 1);
            }
            return val - 2;
        }, -10, 10
    ], {strokeColor: '#cc5520'});
    
 </script> 
/*
This example is licensed under a 
Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0/

Please note you have to mention 
The Center of Mobile Learning with Digital Technology
in the credits.
*/

const BOARDID = 'your_div_id'; // Insert your id here!

const board = JXG.JSXGraph.initBoard(BOARDID, {
    axis: true, boundingbox: [-6, 5, 6, -5]
});

var s = board.create('slider', [[0.75, -2], [4.5, -2], [0, 0, 10]], {name: 'S', snapWidth: 1});

board.create('functiongraph', [
    function(t) {
        var val = 0, sv = s.Value() + 1,  k;

        for (k = 1; k <= sv; k++) {
            val += Math.pow(-1, k) * Math.sin(2 * Math.PI * k * t) / k;
        }
        return val + 2;
    }, -10, 10
], {strokeColor: '#bb0000'});

board.create('functiongraph', [
    function(t) {
        var val = 0, sv = s.Value() + 1, k;

        for (k = 1; k <= sv; k++) {
            val += Math.sin(2 * Math.PI * (2 * k - 1) * t) / (2 * k - 1);
        }
        return val - 2;
    }, -10, 10
], {strokeColor: '#cc5520'});
<jsxgraph width="100%" aspect-ratio="12 / 10" title="Waveforms: pulse and sawtooth" description="This construction was copied from JSXGraph examples database: BTW HERE SHOULD BE A GENERATED LINKuseGlobalJS="false">
   /*
   This example is licensed under a 
   Creative Commons Attribution 4.0 International License.
   https://creativecommons.org/licenses/by/4.0/
   
   Please note you have to mention 
   The Center of Mobile Learning with Digital Technology
   in the credits.
   */
   
   const board = JXG.JSXGraph.initBoard(BOARDID, {
       axis: true, boundingbox: [-6, 5, 6, -5]
   });
   
   var s = board.create('slider', [[0.75, -2], [4.5, -2], [0, 0, 10]], {name: 'S', snapWidth: 1});
   
   board.create('functiongraph', [
       function(t) {
           var val = 0, sv = s.Value() + 1,  k;
   
           for (k = 1; k <= sv; k++) {
               val += Math.pow(-1, k) * Math.sin(2 * Math.PI * k * t) / k;
           }
           return val + 2;
       }, -10, 10
   ], {strokeColor: '#bb0000'});
   
   board.create('functiongraph', [
       function(t) {
           var val = 0, sv = s.Value() + 1, k;
   
           for (k = 1; k <= sv; k++) {
               val += Math.sin(2 * Math.PI * (2 * k - 1) * t) / (2 * k - 1);
           }
           return val - 2;
       }, -10, 10
   ], {strokeColor: '#cc5520'});
   
</jsxgraph>

Waveforms: pulse and sawtooth

Applications
Applied calculus
Calculus
Function plotting
Physics
Approximation of the following waveforms: Reverse sawtooth wave: $$ 2 + \sum_{k=1}^\infty (-1)^k\frac{\sin(2\pi k t)}{k} $$ Pulse wave: $$ (-2) + \sum_{k=1}^\infty \frac{\sin(2 \pi (2k-1)k t)}{(2k-1)} $$
Web references
  • Wikipedia: pulse waveform
  • Wikipedia: swatotth waveform
// Define the id of your board in BOARDID

const board = JXG.JSXGraph.initBoard(BOARDID, {
    axis: true, boundingbox: [-6, 5, 6, -5]
});

var s = board.create('slider', [[0.75, -2], [4.5, -2], [0, 0, 10]], {name: 'S', snapWidth: 1});

board.create('functiongraph', [
    function(t) {
        var val = 0, sv = s.Value() + 1,  k;

        for (k = 1; k <= sv; k++) {
            val += Math.pow(-1, k) * Math.sin(2 * Math.PI * k * t) / k;
        }
        return val + 2;
    }, -10, 10
], {strokeColor: '#bb0000'});

board.create('functiongraph', [
    function(t) {
        var val = 0, sv = s.Value() + 1, k;

        for (k = 1; k <= sv; k++) {
            val += Math.sin(2 * Math.PI * (2 * k - 1) * t) / (2 * k - 1);
        }
        return val - 2;
    }, -10, 10
], {strokeColor: '#cc5520'});

license

This example is licensed under a Creative Commons Attribution 4.0 International License.
Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits.