<iframe src="http://jsxgraph.org/share/iframe/extended-mean-value-theorem" style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" name="JSXGraph example: Extended mean value theorem" allowfullscreen ></iframe>
<div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; "> <div id="board-0" class="jxgbox" style="aspect-ratio: 3 / 2; width: 100%;" data-ar="3 / 2"></div> </div> <script type = "text/javascript"> /* This example is licensed under a Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const BOARDID = 'board-0'; const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-5, 10, 7, -6], axis: true }); // Some initial points var p = []; p.push(board.create('point', [0, -2], {size: 2, name: 'C(a)'})); p.push(board.create('point', [-1.5, 5], {size: 2, name: ''})); p.push(board.create('point', [1, 4], {size: 2, name: ''})); p.push(board.create('point', [3, 3], {size: 2, name: 'C(b)'})); // Lagrange interpolation through the points var fg = JXG.Math.Numerics.Neville(p); var graph = board.create('curve', fg, {strokeWidth: 3, strokeOpacity: 0.5}); // Line var line = board.create('line', [p[0], p[3]], {strokeColor: '#ff0000', dash: 1}); // Derivatives of the curve var df = JXG.Math.Numerics.D(fg[0]); var dg = JXG.Math.Numerics.D(fg[1]); // Usually, the extended mean value theorem is formulated as // df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y()) // We can avoid division by zero with the following formulation: var quot = (t) => df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X()); // Construct the point C(ξ) var r = board.create('glider', [ () => fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)), () => fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)), graph ], {name: 'C(ξ)', size: 4, fixed: true, color: 'blue'}); // Tangent to C through C(ξ) board.create('tangent', [r], {strokeColor: '#ff0000'}); </script>
/* This example is licensed under a Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const BOARDID = 'your_div_id'; // Insert your id here! const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-5, 10, 7, -6], axis: true }); // Some initial points var p = []; p.push(board.create('point', [0, -2], {size: 2, name: 'C(a)'})); p.push(board.create('point', [-1.5, 5], {size: 2, name: ''})); p.push(board.create('point', [1, 4], {size: 2, name: ''})); p.push(board.create('point', [3, 3], {size: 2, name: 'C(b)'})); // Lagrange interpolation through the points var fg = JXG.Math.Numerics.Neville(p); var graph = board.create('curve', fg, {strokeWidth: 3, strokeOpacity: 0.5}); // Line var line = board.create('line', [p[0], p[3]], {strokeColor: '#ff0000', dash: 1}); // Derivatives of the curve var df = JXG.Math.Numerics.D(fg[0]); var dg = JXG.Math.Numerics.D(fg[1]); // Usually, the extended mean value theorem is formulated as // df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y()) // We can avoid division by zero with the following formulation: var quot = (t) => df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X()); // Construct the point C(ξ) var r = board.create('glider', [ () => fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)), () => fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)), graph ], {name: 'C(ξ)', size: 4, fixed: true, color: 'blue'}); // Tangent to C through C(ξ) board.create('tangent', [r], {strokeColor: '#ff0000'});
<jsxgraph width="100%" aspect-ratio="3 / 2" title="Extended mean value theorem" description="This construction was copied from JSXGraph examples database: BTW HERE SHOULD BE A GENERATED LINKuseGlobalJS="false"> /* This example is licensed under a Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-5, 10, 7, -6], axis: true }); // Some initial points var p = []; p.push(board.create('point', [0, -2], {size: 2, name: 'C(a)'})); p.push(board.create('point', [-1.5, 5], {size: 2, name: ''})); p.push(board.create('point', [1, 4], {size: 2, name: ''})); p.push(board.create('point', [3, 3], {size: 2, name: 'C(b)'})); // Lagrange interpolation through the points var fg = JXG.Math.Numerics.Neville(p); var graph = board.create('curve', fg, {strokeWidth: 3, strokeOpacity: 0.5}); // Line var line = board.create('line', [p[0], p[3]], {strokeColor: '#ff0000', dash: 1}); // Derivatives of the curve var df = JXG.Math.Numerics.D(fg[0]); var dg = JXG.Math.Numerics.D(fg[1]); // Usually, the extended mean value theorem is formulated as // df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y()) // We can avoid division by zero with the following formulation: var quot = (t) => df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X()); // Construct the point C(ξ) var r = board.create('glider', [ () => fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)), () => fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)), graph ], {name: 'C(ξ)', size: 4, fixed: true, color: 'blue'}); // Tangent to C through C(ξ) board.create('tangent', [r], {strokeColor: '#ff0000'}); </jsxgraph>
// Define the id of your board in BOARDID const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-5, 10, 7, -6], axis: true }); // Some initial points var p = []; p.push(board.create('point', [0, -2], {size: 2, name: 'C(a)'})); p.push(board.create('point', [-1.5, 5], {size: 2, name: ''})); p.push(board.create('point', [1, 4], {size: 2, name: ''})); p.push(board.create('point', [3, 3], {size: 2, name: 'C(b)'})); // Lagrange interpolation through the points var fg = JXG.Math.Numerics.Neville(p); var graph = board.create('curve', fg, {strokeWidth: 3, strokeOpacity: 0.5}); // Line var line = board.create('line', [p[0], p[3]], {strokeColor: '#ff0000', dash: 1}); // Derivatives of the curve var df = JXG.Math.Numerics.D(fg[0]); var dg = JXG.Math.Numerics.D(fg[1]); // Usually, the extended mean value theorem is formulated as // df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y()) // We can avoid division by zero with the following formulation: var quot = (t) => df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X()); // Construct the point C(ξ) var r = board.create('glider', [ () => fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)), () => fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)), graph ], {name: 'C(ξ)', size: 4, fixed: true, color: 'blue'}); // Tangent to C through C(ξ) board.create('tangent', [r], {strokeColor: '#ff0000'});
This example is licensed under a Creative Commons Attribution 4.0 International License. Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits.