Home
Random example
Search
Applications
Chemistry
Economy
Famous theorems
Geography
Physics
Sports
Test
Assessment
Calculus
3D
Applied calculus
Basic calculus
Differential equations
Function plotting
Implicit plotting
Sequences and series
Charts and data
Charts
Statistics
Curves
Interpolation
Intersection, Union, Difference
Lindenmayer Systems
Splines
Geometry
3D
Analytic
Euclidean
Basic constructions
Mappings
Non-Euclidean
Projective
Symmetry
Technical
Animation
Roulettes
Board options
First steps
Images
JSXGraph objects
Arcs and angles
Axes
Circles
Groups
Lines and arrows
Point
Polygons
Slider
Turtle
Vectors
JessieCode
Texts
Transformations
Video
jsxgraph.org
JSXGraph logo
JSXGraph
JSXGraph share

Share

Epidemiology: SIR model
Show plain example
QR code
<iframe 
    src="http://jsxgraph.org/share/iframe/epidemiology-sir-model" 
    style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" 
    name="JSXGraph example: Epidemiology: SIR model" 
    allowfullscreen
></iframe>
This code has to
<input type="button" value="clear and run a simulation of 100 days" onClick="clearTurtle(); run()"><br/>
<input type="button" value="stop" onClick="stop()"><br/>
<input type="button" value="continue" onClick="goOn()">

<div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; ">
   <div id="board-0" class="jxgbox" style="aspect-ratio: 1 / 1; width: 100%;" data-ar="1 / 1"></div>
</div>

<script type = "text/javascript"> 
    /*
    This example is licensed under a 
    Creative Commons Attribution 4.0 International License.
    https://creativecommons.org/licenses/by/4.0/
    
    Please note you have to mention 
    The Center of Mobile Learning with Digital Technology
    in the credits.
    */
    
    const BOARDID = 'board-0';

    const board = JXG.JSXGraph.initBoard(BOARDID, {
        axis: true,
        boundingbox: [-5, 1.2, 100, -1.2],
        showNavigation: false
    });
    
    // Turtles
    var S = board.create('turtle', [], {
        strokeColor: 'blue',
        strokeWidth: 3
    });
    var I = board.create('turtle', [], {
        strokeColor: 'red',
        strokeWidth: 3
    });
    var R = board.create('turtle', [], {
        strokeColor: 'green',
        strokeWidth: 3
    });
    
    // Sliders
    var s = board.create('slider', [
        [0, -0.6],
        [30, -0.6],
        [0, 1.27E-6, 1]
    ], {
        name: 's'
    });
    board.create('text', [10, -0.3, "initially infected population rate (on load: I(0)=1.27E-6)"]);
    var beta = board.create('slider', [
        [0, -0.7],
        [30, -0.7],
        [0, 0.5, 1]
    ], {
        name: 'β'
    });
    board.create('text', [45, -0.7, "β: infection rate"]);
    var gamma = board.create('slider', [
        [0, -0.8],
        [30, -0.8],
        [0, 0.3, 1]
    ], {
        name: 'γ'
    });
    board.create('text', [45, -0.8, "γ: recovery rate = 1/(days of infection)"]);
    
    var t = 0; // global
    
    board.create('text', [10, -0.2,
        function() {
            return "Day " + t + ": infected=" + (7900000 * I.Y()).toFixed(1) + " recovered=" + (7900000 * R.Y()).toFixed(1);
        }
    ]);
    
    // Reset the turtles
    var clearTurtle = function () {
      S.cs();
      I.cs();
      R.cs();
    
      S.hideTurtle();
      I.hideTurtle();
      R.hideTurtle();
    };
    
    // Start the animation
    var run = function() {
        S.setPos(0, 1.0 - s.Value());
        R.setPos(0, 0);
        I.setPos(0, s.Value());
    
        delta = 1; // global
        t = 0; // global
        loop();
    };
    
    var turtleMove = function (turtle, dx, dy) {
        turtle.moveTo([dx + turtle.X(), dy + turtle.Y()]);
    };
    
    // Animation
    var loop = function() {
        var dS = -beta.Value() * S.Y() * I.Y();
        var dR = gamma.Value() * I.Y();
        var dI = -(dS + dR);
        turtleMove(S, delta, dS);
        turtleMove(R, delta, dR);
        turtleMove(I, delta, dI);
    
        t += delta;
        if (t < 100.0) {
            active = setTimeout(loop, 10);
        }
    };
    
    // Stop animation
    var stop = function() {
        if (active) clearTimeout(active);
        active = null;
    };
    
    // Continue
    var goOn = function() {
        if (t > 0) {
            if (active === null) {
                active = setTimeout(loop, 10);
            }
        } else {
            run();
        }
    };
    
    clearTurtle();
 </script> 
/*
This example is licensed under a 
Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0/

Please note you have to mention 
The Center of Mobile Learning with Digital Technology
in the credits.
*/

const BOARDID = 'your_div_id'; // Insert your id here!

const board = JXG.JSXGraph.initBoard(BOARDID, {
    axis: true,
    boundingbox: [-5, 1.2, 100, -1.2],
    showNavigation: false
});

// Turtles
var S = board.create('turtle', [], {
    strokeColor: 'blue',
    strokeWidth: 3
});
var I = board.create('turtle', [], {
    strokeColor: 'red',
    strokeWidth: 3
});
var R = board.create('turtle', [], {
    strokeColor: 'green',
    strokeWidth: 3
});

// Sliders
var s = board.create('slider', [
    [0, -0.6],
    [30, -0.6],
    [0, 1.27E-6, 1]
], {
    name: 's'
});
board.create('text', [10, -0.3, "initially infected population rate (on load: I(0)=1.27E-6)"]);
var beta = board.create('slider', [
    [0, -0.7],
    [30, -0.7],
    [0, 0.5, 1]
], {
    name: 'β'
});
board.create('text', [45, -0.7, "β: infection rate"]);
var gamma = board.create('slider', [
    [0, -0.8],
    [30, -0.8],
    [0, 0.3, 1]
], {
    name: 'γ'
});
board.create('text', [45, -0.8, "γ: recovery rate = 1/(days of infection)"]);

var t = 0; // global

board.create('text', [10, -0.2,
    function() {
        return "Day " + t + ": infected=" + (7900000 * I.Y()).toFixed(1) + " recovered=" + (7900000 * R.Y()).toFixed(1);
    }
]);

// Reset the turtles
var clearTurtle = function () {
  S.cs();
  I.cs();
  R.cs();

  S.hideTurtle();
  I.hideTurtle();
  R.hideTurtle();
};

// Start the animation
var run = function() {
    S.setPos(0, 1.0 - s.Value());
    R.setPos(0, 0);
    I.setPos(0, s.Value());

    delta = 1; // global
    t = 0; // global
    loop();
};

var turtleMove = function (turtle, dx, dy) {
    turtle.moveTo([dx + turtle.X(), dy + turtle.Y()]);
};

// Animation
var loop = function() {
    var dS = -beta.Value() * S.Y() * I.Y();
    var dR = gamma.Value() * I.Y();
    var dI = -(dS + dR);
    turtleMove(S, delta, dS);
    turtleMove(R, delta, dR);
    turtleMove(I, delta, dI);

    t += delta;
    if (t < 100.0) {
        active = setTimeout(loop, 10);
    }
};

// Stop animation
var stop = function() {
    if (active) clearTimeout(active);
    active = null;
};

// Continue
var goOn = function() {
    if (t > 0) {
        if (active === null) {
            active = setTimeout(loop, 10);
        }
    } else {
        run();
    }
};

clearTurtle();

Epidemiology: SIR model

Applications
Calculus
Differential equations
Turtle
This is an example of simulation of differential equations with __turtle graphics__. ### SIR model without vital dynamics The SIR model measures the number of susceptible, infected, and recovered individuals in a host population. Given a fixed population, let $S(t)$ be the fraction that is susceptible to an infectious, but not deadly, disease at time $t$, let $I(t)$ be the fraction that is infected at time $t$ and let $R(t)$ be the fraction that has recovered. Let $\beta$ be the rate at which an infected person infects a susceptible person. Let $\gamma$ be the rate at which infected people recover from the disease. A single epidemic outbreak is usually far more rapid than the vital dynamics of a population, thus, if the aim is to study the immediate consequences of a single epidemic, one may neglect birth-death processes. In this case the SIR system can be expressed by the following set of differential equations: $$ \begin{aligned} \frac{dS}{dt} &= - \beta I S \\ \frac{dR}{dt} &= \gamma I \\ \frac{dI}{dt} &= -(\frac{dS}{dt}+\frac{dR}{dt}) \end{aligned} $$ ### Example Hong Kong flu - initially 7.9 million people, - 10 infected, - 0 recovered. - estimated average period of infection: 3 days, so $\gamma = 1/3$ - infection rate: one new person every other day, so $\beta = 1/2$ Thus $S(0) = 1$, $I(0) = 1.27E-6$, $R(0) = 0$, see [https://www.cs.princeton.edu/introcs/94diffeq/](https://www.cs.princeton.edu/introcs/94diffeq/). The lines in the JSXGraph-simulation below have the following meaning: - Blue: Rate of susceptible population - Red: Rate of infected population - Green: Rate of recovered population (which means: immune, isolated or dead)
Have also a look at the examples
  • Epidemiology: SEIR model
Web references
  • Example
  • Wikipedia: Compartmental models in epidemiology
  • Wolfram: SIR Model


<input type="button" value="clear and run a simulation of 100 days" onClick="clearTurtle(); run()"><br/>
<input type="button" value="stop" onClick="stop()"><br/>
<input type="button" value="continue" onClick="goOn()">
// Define the id of your board in BOARDID

const board = JXG.JSXGraph.initBoard(BOARDID, {
    axis: true,
    boundingbox: [-5, 1.2, 100, -1.2],
    showNavigation: false
});

// Turtles
var S = board.create('turtle', [], {
    strokeColor: 'blue',
    strokeWidth: 3
});
var I = board.create('turtle', [], {
    strokeColor: 'red',
    strokeWidth: 3
});
var R = board.create('turtle', [], {
    strokeColor: 'green',
    strokeWidth: 3
});

// Sliders
var s = board.create('slider', [
    [0, -0.6],
    [30, -0.6],
    [0, 1.27E-6, 1]
], {
    name: 's'
});
board.create('text', [10, -0.3, "initially infected population rate (on load: I(0)=1.27E-6)"]);
var beta = board.create('slider', [
    [0, -0.7],
    [30, -0.7],
    [0, 0.5, 1]
], {
    name: 'β'
});
board.create('text', [45, -0.7, "β: infection rate"]);
var gamma = board.create('slider', [
    [0, -0.8],
    [30, -0.8],
    [0, 0.3, 1]
], {
    name: 'γ'
});
board.create('text', [45, -0.8, "γ: recovery rate = 1/(days of infection)"]);

var t = 0; // global

board.create('text', [10, -0.2,
    function() {
        return "Day " + t + ": infected=" + (7900000 * I.Y()).toFixed(1) + " recovered=" + (7900000 * R.Y()).toFixed(1);
    }
]);

// Reset the turtles
var clearTurtle = function () {
  S.cs();
  I.cs();
  R.cs();

  S.hideTurtle();
  I.hideTurtle();
  R.hideTurtle();
};

// Start the animation
var run = function() {
    S.setPos(0, 1.0 - s.Value());
    R.setPos(0, 0);
    I.setPos(0, s.Value());

    delta = 1; // global
    t = 0; // global
    loop();
};

var turtleMove = function (turtle, dx, dy) {
    turtle.moveTo([dx + turtle.X(), dy + turtle.Y()]);
};

// Animation
var loop = function() {
    var dS = -beta.Value() * S.Y() * I.Y();
    var dR = gamma.Value() * I.Y();
    var dI = -(dS + dR);
    turtleMove(S, delta, dS);
    turtleMove(R, delta, dR);
    turtleMove(I, delta, dI);

    t += delta;
    if (t < 100.0) {
        active = setTimeout(loop, 10);
    }
};

// Stop animation
var stop = function() {
    if (active) clearTimeout(active);
    active = null;
};

// Continue
var goOn = function() {
    if (t > 0) {
        if (active === null) {
            active = setTimeout(loop, 10);
        }
    } else {
        run();
    }
};

clearTurtle();

license

This example is licensed under a Creative Commons Attribution 4.0 International License.
Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits.