Home
Random example
Search
Applications
Chemistry
Economy
Famous theorems
Geography
Physics
Sports
Test
Assessment
Calculus
3D
Applied calculus
Basic calculus
Differential equations
Function plotting
Implicit plotting
Sequences and series
Charts and data
Charts
Statistics
Curves
Interpolation
Intersection, Union, Difference
Lindenmayer Systems
Splines
Geometry
3D
Analytic
Euclidean
Basic constructions
Mappings
Non-Euclidean
Projective
Symmetry
Technical
Animation
Roulettes
Board options
First steps
Images
JSXGraph objects
Arcs and angles
Axes
Circles
Groups
Lines and arrows
Point
Polygons
Slider
Turtle
Vectors
JessieCode
Texts
Transformations
Video
jsxgraph.org
JSXGraph logo
JSXGraph
JSXGraph share

Share

Complex roots of polynomial with real coefficients (dynamic)
Show plain example
QR code
<iframe 
    src="http://jsxgraph.org/share/iframe/complex-root-of-polynomial-with-real-coefficients-dynamic" 
    style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" 
    name="JSXGraph example: Complex roots of polynomial with real coefficients (dynamic)" 
    allowfullscreen
></iframe>
This code has to
<div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; ">
   <div id="board-0" class="jxgbox" style="aspect-ratio: 1 / 1; width: 100%;" data-ar="1 / 1"></div>
</div>

<script type = "text/javascript"> 
    /*
    This example is licensed under a 
    Creative Commons Attribution ShareAlike 4.0 International License.
    https://creativecommons.org/licenses/by-sa/4.0/
    
    Please note you have to mention 
    The Center of Mobile Learning with Digital Technology
    in the credits.
    */
    
    const BOARDID = 'board-0';

    const board = JXG.JSXGraph.initBoard(BOARDID, {
        boundingbox: [-9, 9, 9, -9],
        axis: true,
        defaultAxes: {
            x: {
                name: 'real part',
                withLabel: true,
                label: {
                    position: 'rt',
                    offset: [-5, 15],
                    anchorX: 'right'
                }
            },
            y: {
                withLabel: true,
                name: 'imaginary part',
                label: {
                    position: 'rt',
                    offset: [5, -5],
                    anchorY: 'top'
                }
            }
        },
    });
    
    // Coefficients [a_o, ..., a_n] of a polynomial, 
    // starting with a_0, a_1, ...
    var coefficients = [-1, 3, -9, 1, 0, 0, -8, 9, -9, 1];
    
    // Manipulate coefficients a_7 and a_8
    var a8 = board.create('slider', [
        [0, 7],
        [6, 7],
        [-10, -9, 10]
    ], {
        name: 'a_8',
        snapWidth: 0.1,
        snapValues: [0],
        snapValueDistance: 0.4
    });
    var a7 = board.create('slider', [
        [0, 6],
        [6, 6],
        [-10, 9, 10]
    ], {
        name: 'a_7',
        snapWidth: 0.1,
        snapValues: [0],
        snapValueDistance: 0.4
    });
    
    var i;
    for (i = 0; i < 9; i++) {
        board.create('point', [
            (function(ii) {
                return function() {
                    coefficients[7] = a7.Value();
                    coefficients[8] = a8.Value();
                    let roots = JXG.Math.Numerics.polzeros(coefficients);
                    return [roots[ii].real, roots[ii].imaginary];
                }
            })(i)
        ], {
            withLabel: false
        });
    }
    
    board.create('text', [-8, -5, () => JXG.Math.Numerics.generatePolynomialTerm(coefficients, coefficients.length - 1, 'x', 1)], {fixed: true});
 </script> 
/*
This example is licensed under a 
Creative Commons Attribution ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-sa/4.0/

Please note you have to mention 
The Center of Mobile Learning with Digital Technology
in the credits.
*/

const BOARDID = 'your_div_id'; // Insert your id here!

const board = JXG.JSXGraph.initBoard(BOARDID, {
    boundingbox: [-9, 9, 9, -9],
    axis: true,
    defaultAxes: {
        x: {
            name: 'real part',
            withLabel: true,
            label: {
                position: 'rt',
                offset: [-5, 15],
                anchorX: 'right'
            }
        },
        y: {
            withLabel: true,
            name: 'imaginary part',
            label: {
                position: 'rt',
                offset: [5, -5],
                anchorY: 'top'
            }
        }
    },
});

// Coefficients [a_o, ..., a_n] of a polynomial, 
// starting with a_0, a_1, ...
var coefficients = [-1, 3, -9, 1, 0, 0, -8, 9, -9, 1];

// Manipulate coefficients a_7 and a_8
var a8 = board.create('slider', [
    [0, 7],
    [6, 7],
    [-10, -9, 10]
], {
    name: 'a_8',
    snapWidth: 0.1,
    snapValues: [0],
    snapValueDistance: 0.4
});
var a7 = board.create('slider', [
    [0, 6],
    [6, 6],
    [-10, 9, 10]
], {
    name: 'a_7',
    snapWidth: 0.1,
    snapValues: [0],
    snapValueDistance: 0.4
});

var i;
for (i = 0; i < 9; i++) {
    board.create('point', [
        (function(ii) {
            return function() {
                coefficients[7] = a7.Value();
                coefficients[8] = a8.Value();
                let roots = JXG.Math.Numerics.polzeros(coefficients);
                return [roots[ii].real, roots[ii].imaginary];
            }
        })(i)
    ], {
        withLabel: false
    });
}

board.create('text', [-8, -5, () => JXG.Math.Numerics.generatePolynomialTerm(coefficients, coefficients.length - 1, 'x', 1)], {fixed: true});
<jsxgraph width="100%" aspect-ratio="1 / 1" title="Complex roots of polynomial with real coefficients (dynamic)" description="This construction was copied from JSXGraph examples database: BTW HERE SHOULD BE A GENERATED LINKuseGlobalJS="false">
   /*
   This example is licensed under a 
   Creative Commons Attribution ShareAlike 4.0 International License.
   https://creativecommons.org/licenses/by-sa/4.0/
   
   Please note you have to mention 
   The Center of Mobile Learning with Digital Technology
   in the credits.
   */
   
   const board = JXG.JSXGraph.initBoard(BOARDID, {
       boundingbox: [-9, 9, 9, -9],
       axis: true,
       defaultAxes: {
           x: {
               name: 'real part',
               withLabel: true,
               label: {
                   position: 'rt',
                   offset: [-5, 15],
                   anchorX: 'right'
               }
           },
           y: {
               withLabel: true,
               name: 'imaginary part',
               label: {
                   position: 'rt',
                   offset: [5, -5],
                   anchorY: 'top'
               }
           }
       },
   });
   
   // Coefficients [a_o, ..., a_n] of a polynomial, 
   // starting with a_0, a_1, ...
   var coefficients = [-1, 3, -9, 1, 0, 0, -8, 9, -9, 1];
   
   // Manipulate coefficients a_7 and a_8
   var a8 = board.create('slider', [
       [0, 7],
       [6, 7],
       [-10, -9, 10]
   ], {
       name: 'a_8',
       snapWidth: 0.1,
       snapValues: [0],
       snapValueDistance: 0.4
   });
   var a7 = board.create('slider', [
       [0, 6],
       [6, 6],
       [-10, 9, 10]
   ], {
       name: 'a_7',
       snapWidth: 0.1,
       snapValues: [0],
       snapValueDistance: 0.4
   });
   
   var i;
   for (i = 0; i < 9; i++) {
       board.create('point', [
           (function(ii) {
               return function() {
                   coefficients[7] = a7.Value();
                   coefficients[8] = a8.Value();
                   let roots = JXG.Math.Numerics.polzeros(coefficients);
                   return [roots[ii].real, roots[ii].imaginary];
               }
           })(i)
       ], {
           withLabel: false
       });
   }
   
   board.create('text', [-8, -5, () => JXG.Math.Numerics.generatePolynomialTerm(coefficients, coefficients.length - 1, 'x', 1)], {fixed: true});
</jsxgraph>

Complex roots of polynomial with real coefficients (dynamic)

Calculus
Compute *all* complex roots of a polynomial with real coefficients and display them in the complex plane. JSXGraph has its own variant of the Aberth, Ehrlich, Weierstraß algorithm implemented. Coefficients $a_7$ and $a_8$ of polynomial can be manipulated by dragging the sliders.
Have also a look at the examples
  • All real roots of a polynomial
  • Complex roots of polynomial with real coefficients
// Define the id of your board in BOARDID

const board = JXG.JSXGraph.initBoard(BOARDID, {
    boundingbox: [-9, 9, 9, -9],
    axis: true,
    defaultAxes: {
        x: {
            name: 'real part',
            withLabel: true,
            label: {
                position: 'rt',
                offset: [-5, 15],
                anchorX: 'right'
            }
        },
        y: {
            withLabel: true,
            name: 'imaginary part',
            label: {
                position: 'rt',
                offset: [5, -5],
                anchorY: 'top'
            }
        }
    },
});

// Coefficients [a_o, ..., a_n] of a polynomial, 
// starting with a_0, a_1, ...
var coefficients = [-1, 3, -9, 1, 0, 0, -8, 9, -9, 1];

// Manipulate coefficients a_7 and a_8
var a8 = board.create('slider', [
    [0, 7],
    [6, 7],
    [-10, -9, 10]
], {
    name: 'a_8',
    snapWidth: 0.1,
    snapValues: [0],
    snapValueDistance: 0.4
});
var a7 = board.create('slider', [
    [0, 6],
    [6, 6],
    [-10, 9, 10]
], {
    name: 'a_7',
    snapWidth: 0.1,
    snapValues: [0],
    snapValueDistance: 0.4
});

var i;
for (i = 0; i < 9; i++) {
    board.create('point', [
        (function(ii) {
            return function() {
                coefficients[7] = a7.Value();
                coefficients[8] = a8.Value();
                let roots = JXG.Math.Numerics.polzeros(coefficients);
                return [roots[ii].real, roots[ii].imaginary];
            }
        })(i)
    ], {
        withLabel: false
    });
}

board.create('text', [-8, -5, () => JXG.Math.Numerics.generatePolynomialTerm(coefficients, coefficients.length - 1, 'x', 1)], {fixed: true});

license

This example is licensed under a Creative Commons Attribution ShareAlike 4.0 International License.
Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits.