Abstract
 JSXGraph and 3D graphics

Juha-Matti Huusko

University of Eastern Finland juha-matti.huusko@uef.fi

As the talk may be contain many technicalities, the intended audience are university teachers and developers.

In general, how can 3D graphics be added in a down-to-earth fashion? How to do it efficiently? Could JSXGraph some day handle 3D points natively?

Let us use JSXGraph to visualize 3D objects: points, lines, planes, solids and surfaces. To rotate the object, we add sliders for the Azimuth (az) and Elevation (el).

First, let us consider the surface $z=f(x, y)$.
The user can give a formula of $f(x, y)$. We can then calculate $z_{j k}=f\left(x_{j}, y_{k}\right)$ for each rectangular lattice point $\left(x_{j}, y_{k}\right)$ in $[-L, L]^{2}$.

The points $p_{j k}=\left(x_{j}, y_{k}, z_{j k}\right)$ can be projected to a plane and visualized in the computer. The triangles $p_{j k}, p_{j(k \pm 1)}, p_{j(k \pm 1)}$ can be drawn to produce a surface. For rotations of the surface, the example code uses rotation matrices.

Second, let us consider the geometric objects.
JSXGraph supports generic projective mappings which allow us to slant the $x y$ plane. When we add the z axis, we obtain a visualization of \mathbb{R}^{3}.

A rectangular grid in the $x y$ plane becomes a slant grid. A magnetized point $p_{x y}=(x, y, 0)$ snaps to the slant grid and moves as the Azimuth is adjusted. A magnetized point $p_{z}=(0,0, z)$ can be moved on the z axis. The 3D point $p=p_{x y}+p_{z}$ can be adjusted easily with the mouse.

To handle the code by pressing buttons, a JSXGraph editor was coded in PHP.

