

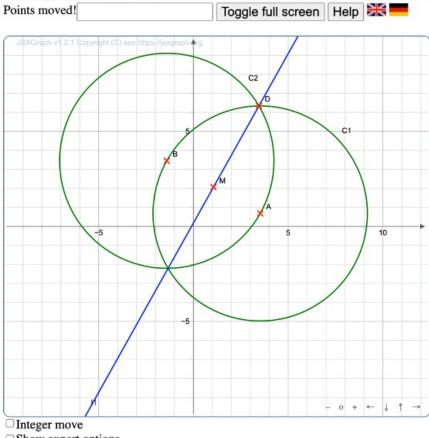
Algebra as a geometric modeling language

JSXGraph Conference 2, 6th October 2021

R. Oldenburg

reinhard.oldenburg@math.uni-augsburg.de

<u>https://myweb.rz.uni-</u> augsburg.de/~oldenbre/jsfelix/F2d/jxfelix.html



FeliX

(Re-)Introduction of FeliX – 2002: Prototype, 2021: Web version

FeiiX 📐 🕺 🛠 🔹 🖄 🚫 🧭 🧨 🗙 🏷 🖉 🖉 👘 🗠 💬 🗡

Object		Value		ô	0
A		[3.53,0.68]			
В		[-1.41,3.45]			
М		[1.06,2.06]			
D		[3.46,6.34]			

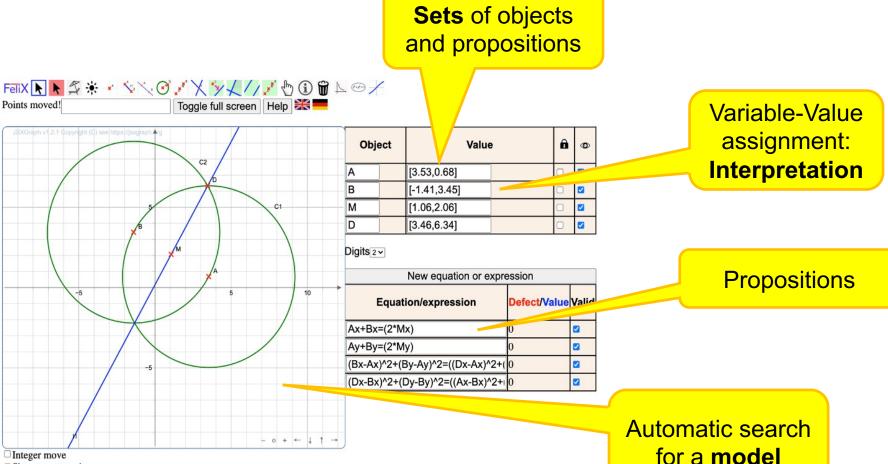
Digits 2 -

New equation or expression				
Equation/expression	Defect/Value	Valid		
Ax+Bx=(2*Mx)	0			
Ay+By=(2*My)	0			
(Bx-Ax)^2+(By-Ay)^2=((Dx-Ax)^2+(0			
(Dx-Bx)^2+(Dy-By)^2=((Ax-Bx)^2+	0			

First demo: mid points, ellipse, sliding ladder

□ Show expert options

- Functional vs. Relational thinking
- Functional Thinking: (in)dependent variables, covariation
 - Technical realization
 - Dynamic geometry e.g. Geogebra, Cinderella, GSP
 - Spreadsheets
- Relational Thinking: related variables, mutual connection
 - No technical realization for schools
 - But important in physics, economics, ...
- Basic mental model of (in)equations

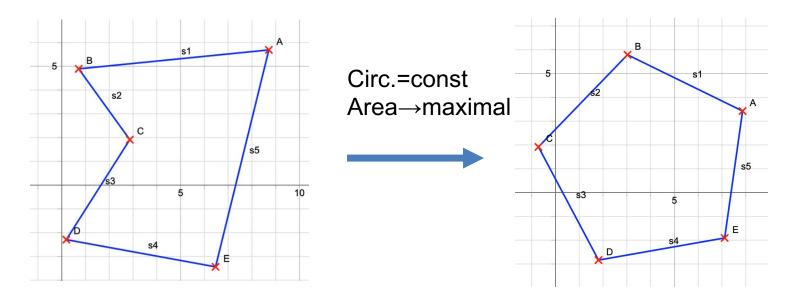


Universität

Augsburg University

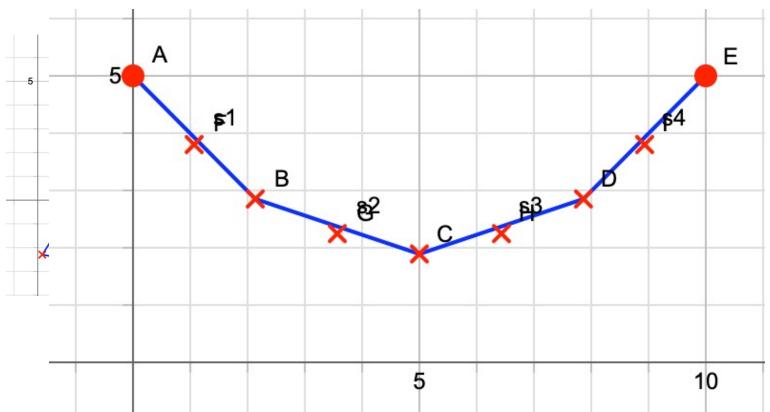
UN

• Sound and simple logical basis


□ Show expert options

FeliX: Features

- Inequalities
- Expressions \rightarrow Optimization
 - Fermat-Torricelli point in triangle



FeliX: Features

- Inequalities
- Expressions \rightarrow Optimization
 - Fermat-Torricelli point in triangle

Techniques

- Implementation: JSXGraph for UI, plotting,...., giac for expression manipulation, Groebner bases and numerical constraint optimization
- How it works
 - Geometric Constraints \rightarrow Set(!) *S* of algebraic (in)equations; sum of valid expressions *F*
 - Move Point (x, y) with coordinates to (x_0, y_0) : minimize $(x - x_0)^2 + (y - y_0)^2 + F$ subject to *S*
 - **Relax**: Minimize $\sum_{(s=0)\in S} s^2 + F$
 - Calculate orbit: Point (x, y) : eliminate(S, vars_of_non_fix_objs \ {x, y}) factorize off irrelevant factors

Issues & Perspectives

- Euclidean or projective geometry?
- How much damping?
- Purely symbolic version?
- Probability
- Regions (e.g. $A_x^2 + A_y^2 < 1 \land A_y < 0$)
- User interface
 - Improved handling: Change colors, redo/undo, save/load/export, equation editor
 - Non-algebraic model mode: Tool to represent knowledge \rightarrow Modelling in school
- Development of tasks