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Modelling how infectious diseases spread is a research field that has a century
long history. From today’s viewpoint, which is shaped by the current corona pan-
demic, the design, analysis and simulation of appropriate models are among the
most central and timely research challenges around the globe. Appropriate and
adequate epidemiologic models are important and indispensable tools for govern-
ments, health departments and physicians.

There is a plethora of available models that describe the dissemination of dis-
eases. In this context, the class of compartment models is very popular and plays
a prominent and central role. In abstract terms, these models partition the popu-
lation in disjoint groups called compartments, and they specify at which rates the
individuals make a transition from one compartment to another. The most basic
model of this type is the Kermack-McKendrick Model or SIR model:

e there are the three compartments susceptible (S), infected (I) and removed
(R);

e susceptible individuals get infected with rate §|I|, for some 8 > 0 and
where || denotes the number of infected individuals;

e infected individuals get removed (that is, they recover or die) with some
recovery rate v > 0.

Figure[T]shows the compartment structure and the transition rates, and an example
of the evolution of the system with initially one infected and 107 — 1 susceptible
individuals.

Compartment models are simple to describe and offer at the same time plenty
of flexibility, and this one of the reasons for their immense popularity. In such
models it is, for instance, possible to define compartments that distinguish among
several types of the severeness of the symptoms; for example, we can distinguish
among individuals who have light symptoms and ones that are hospitalized or even
need intensive care. Models with a fine grained compartment structure and care-
fully tuned transitions rates have always been rather popular and have become
more so since the outbreak of the corona virus. For a survey see [1].

A compartment model is usually specified as in Figure[] that is, by utilizing a
weighted directed graph: the compartments are the nodes, and the directed edges
store the appropriate transition rates. Equivalently, the model can be defined with
a system of differential equations. For the SIR model, the system is given by

S '=—-BIS, I =BIS—~I, R =~I.

The right-hand sides of these equations reflect exactly the specified transition rates
between the compartments. The three functions S, I, R stand for the (relative) size
of the compartments at any given point in time.

When having an appropriate compartment model at hand, there are many fun-
damental questions that have to be addressed and studied by the developers. What
is the effect of the transition rates on the behaviour of the outbreak? What can we
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Figure 1: This figure shows the compartment structure and the transition rates of the SIR model
and an example of its evolution with S(0) = 107 — 1,1(0) = 1, 8 = 0.12 and y = 0.04. The
graph is normalized to 1, i.e the total population is 1 and the number of initially infected is 107"
From the curves two observations can easily be made: At the peak of the pandemic ~ 30% of the
population will be infected at the same time and at the end less than 10% have never contracted
the infection.

say about the rates that hinder an outbreak and how do systems look like that pro-
mote the dissemination? What is the effect of changing the rates on the sizes of the
compartments? In this work we addressed such questions and developed a system
with JSXGraph that allows us to develop graphically a model by adding compart-
ments and specifying the transition rates and the initial sizes of the compartments.
The system generates automatically the associated system of differential equations
and it determines the evolution of the compartment sizes over a given number of
days. Moreover, it allows for real-time adjustment of the parameters/transition
rates, so that it becomes very easy to understand their effect on the curves. Finally,
the systems allows the user to specify intervention points: after a given number of
days, the values of the rates can be adjusted. This allows for a detailed study of
several containment measures that aim at slowing down the spread of the epidemic.
This work is useful for researchers that want to gain a quick and easy insight into
any compartment model that they are working on and as well as for teachers that
want to demonstrate compartment models and their behaviour on change of input
variables. See Figure 2] for an application using the SIR model and Figure [3]for an
application using a more involved model taken from a recently published paper.

Technical Implementation This tool has two main parts, a directed graph
and a plot. The directed graph is realized as a finite state machine with which the
compartment model with its transitions are entered and the underlying differential
equations are derived. For its implementation we took inspiration from [2]. The
plot is implemented using the JSXGraph library and its rungeKutta method. We



added points to change the parameters and added on-click events on them for a
responsive feeling.

Live Version A live version of the tool can be found at
www.mathematik.uni-muenchen.de/~reisser/EMS.
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Figure 2: Example Application: SIR model with intervention at time ¢; = 100 and ¢, = 200. It is v = 0.04 at all times and /3 changes
from 0.12 at ¢ over 0.02 at ¢; to 0.08 at ¢5. This simulates the start of an epidemic with a high infection rate at the start, then there is a
lock-down after 100 day that greatly reduces the infection rates. After another 100 days the lock-down is lifted and replaced with lighter
restrictions like mandatory face-masks and social distancing. The graph is display in a semi-logarithmic scale.
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Figure 3: Example Application: SEI;IoRQH from [3], where the compartments are Sucseptible, Exposed, Infectious with intervention,
Infectious without intervention, Recovered, Quaranteened and Hospitalized. It is used to model the COVID-19 outbreak in Hubei province.
Parameters and initial conditions are set to estimates made from real life data in [3].



